Spaces:
Runtime error
Runtime error
File size: 11,481 Bytes
e628a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import numpy as np
import math
from torch import nn
from model.stylegan.model import ConvLayer, EqualLinear, Generator, ResBlock
from model.dualstylegan import AdaptiveInstanceNorm, AdaResBlock, DualStyleGAN
import torch.nn.functional as F
# IC-GAN: stylegan discriminator
class ConditionalDiscriminator(nn.Module):
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], use_condition=False, style_num=None):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
convs = [ConvLayer(3, channels[size], 1)]
log_size = int(math.log(size, 2))
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
in_channel = out_channel
self.convs = nn.Sequential(*convs)
self.stddev_group = 4
self.stddev_feat = 1
self.use_condition = use_condition
if self.use_condition:
self.condition_dim = 128
# map style degree to 64-dimensional vector
self.label_mapper = nn.Sequential(
nn.Linear(1, 64),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Linear(64, 64),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Linear(64, self.condition_dim//2),
)
# map style code index to 64-dimensional vector
self.style_mapper = nn.Embedding(style_num, self.condition_dim-self.condition_dim//2)
else:
self.condition_dim = 1
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
self.final_linear = nn.Sequential(
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
EqualLinear(channels[4], self.condition_dim),
)
def forward(self, input, degree_label=None, style_ind=None):
out = self.convs(input)
batch, channel, height, width = out.shape
group = min(batch, self.stddev_group)
stddev = out.view(
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
)
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
stddev = stddev.repeat(group, 1, height, width)
out = torch.cat([out, stddev], 1)
out = self.final_conv(out)
out = out.view(batch, -1)
if self.use_condition:
h = self.final_linear(out)
condition = torch.cat((self.label_mapper(degree_label), self.style_mapper(style_ind)), dim=1)
out = (h * condition).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.condition_dim))
else:
out = self.final_linear(out)
return out
class VToonifyResBlock(nn.Module):
def __init__(self, fin):
super().__init__()
self.conv = nn.Conv2d(fin, fin, 3, 1, 1)
self.conv2 = nn.Conv2d(fin, fin, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
out = self.lrelu(self.conv(x))
out = self.lrelu(self.conv2(out))
out = (out + x) / math.sqrt(2)
return out
class Fusion(nn.Module):
def __init__(self, in_channels, skip_channels, out_channels):
super().__init__()
# create conv layers
self.conv = nn.Conv2d(in_channels + skip_channels, out_channels, 3, 1, 1, bias=True)
self.norm = AdaptiveInstanceNorm(in_channels + skip_channels, 128)
self.conv2 = nn.Conv2d(in_channels + skip_channels, 1, 3, 1, 1, bias=True)
#'''
self.linear = nn.Sequential(
nn.Linear(1, 64),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Linear(64, 128),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
def forward(self, f_G, f_E, d_s=1):
# label of style degree
label = self.linear(torch.zeros(f_G.size(0),1).to(f_G.device) + d_s)
out = torch.cat([f_G, abs(f_G-f_E)], dim=1)
m_E = (F.relu(self.conv2(self.norm(out, label)))).tanh()
f_out = self.conv(torch.cat([f_G, f_E * m_E], dim=1))
return f_out, m_E
class VToonify(nn.Module):
def __init__(self,
in_size=256,
out_size=1024,
img_channels=3,
style_channels=512,
num_mlps=8,
channel_multiplier=2,
num_res_layers=6,
backbone = 'dualstylegan',
):
super().__init__()
self.backbone = backbone
if self.backbone == 'dualstylegan':
# DualStyleGAN, with weights being fixed
self.generator = DualStyleGAN(out_size, style_channels, num_mlps, channel_multiplier)
else:
# StyleGANv2, with weights being fixed
self.generator = Generator(out_size, style_channels, num_mlps, channel_multiplier)
self.in_size = in_size
self.style_channels = style_channels
channels = self.generator.channels
# encoder
num_styles = int(np.log2(out_size)) * 2 - 2
encoder_res = [2**i for i in range(int(np.log2(in_size)), 4, -1)]
self.encoder = nn.ModuleList()
self.encoder.append(
nn.Sequential(
nn.Conv2d(img_channels+19, 32, 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(32, channels[in_size], 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True)))
for res in encoder_res:
in_channels = channels[res]
if res > 32:
out_channels = channels[res // 2]
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True))
self.encoder.append(block)
else:
layers = []
for _ in range(num_res_layers):
layers.append(VToonifyResBlock(in_channels))
self.encoder.append(nn.Sequential(*layers))
block = nn.Conv2d(in_channels, img_channels, 1, 1, 0, bias=True)
self.encoder.append(block)
# trainable fusion module
self.fusion_out = nn.ModuleList()
self.fusion_skip = nn.ModuleList()
for res in encoder_res[::-1]:
num_channels = channels[res]
if self.backbone == 'dualstylegan':
self.fusion_out.append(
Fusion(num_channels, num_channels, num_channels))
else:
self.fusion_out.append(
nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True))
self.fusion_skip.append(
nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True))
# Modified ModRes blocks in DualStyleGAN, with weights being fixed
if self.backbone == 'dualstylegan':
self.res = nn.ModuleList()
self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) # for conv1, no use in this model
for i in range(3, 6):
out_channel = self.generator.channels[2 ** i]
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))
def forward(self, x, style, d_s=None, return_mask=False, return_feat=False):
# map style to W+ space
if style is not None and style.ndim < 3:
if self.backbone == 'dualstylegan':
resstyles = self.generator.style(style).unsqueeze(1).repeat(1, self.generator.n_latent, 1)
adastyles = style.unsqueeze(1).repeat(1, self.generator.n_latent, 1)
elif style is not None:
nB, nL, nD = style.shape
if self.backbone == 'dualstylegan':
resstyles = self.generator.style(style.reshape(nB*nL, nD)).reshape(nB, nL, nD)
adastyles = style
if self.backbone == 'dualstylegan':
adastyles = adastyles.clone()
for i in range(7, self.generator.n_latent):
adastyles[:, i] = self.generator.res[i](adastyles[:, i])
# obtain multi-scale content features
feat = x
encoder_features = []
# downsampling conv parts of E
for block in self.encoder[:-2]:
feat = block(feat)
encoder_features.append(feat)
encoder_features = encoder_features[::-1]
# Resblocks in E
for ii, block in enumerate(self.encoder[-2]):
feat = block(feat)
# adjust Resblocks with ModRes blocks
if self.backbone == 'dualstylegan':
feat = self.res[ii+1](feat, resstyles[:, ii+1], d_s)
# the last-layer feature of E (inputs of backbone)
out = feat
skip = self.encoder[-1](feat)
if return_feat:
return out, skip
# 32x32 ---> higher res
_index = 1
m_Es = []
for conv1, conv2, to_rgb in zip(
self.stylegan().convs[6::2], self.stylegan().convs[7::2], self.stylegan().to_rgbs[3:]):
# pass the mid-layer features of E to the corresponding resolution layers of G
if 2 ** (5+((_index-1)//2)) <= self.in_size:
fusion_index = (_index - 1) // 2
f_E = encoder_features[fusion_index]
if self.backbone == 'dualstylegan':
out, m_E = self.fusion_out[fusion_index](out, f_E, d_s)
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E*m_E], dim=1))
m_Es += [m_E]
else:
out = self.fusion_out[fusion_index](torch.cat([out, f_E], dim=1))
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E], dim=1))
# remove the noise input
batch, _, height, width = out.shape
noise = x.new_empty(batch, 1, height * 2, width * 2).normal_().detach() * 0.0
out = conv1(out, adastyles[:, _index+6], noise=noise)
out = conv2(out, adastyles[:, _index+7], noise=noise)
skip = to_rgb(out, adastyles[:, _index+8], skip)
_index += 2
image = skip
if return_mask and self.backbone == 'dualstylegan':
return image, m_Es
return image
def stylegan(self):
if self.backbone == 'dualstylegan':
return self.generator.generator
else:
return self.generator
def zplus2wplus(self, zplus):
return self.stylegan().style(zplus.reshape(zplus.shape[0]*zplus.shape[1], zplus.shape[2])).reshape(zplus.shape)
|