File size: 6,247 Bytes
fc378c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
mport os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import numpy as np
import cv2
import math
import argparse
from tqdm import tqdm
import torch
from torch import nn
from torchvision import transforms
import torch.nn.functional as F
from model.raft.core.raft import RAFT
from model.raft.core.utils.utils import InputPadder
from model.bisenet.model import BiSeNet
from model.stylegan.model import Downsample

class Options():
    def __init__(self):

        self.parser = argparse.ArgumentParser(description="Smooth Parsing Maps")
        self.parser.add_argument("--window_size", type=int, default=5, help="temporal window size")
        
        self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
        self.parser.add_argument("--raft_path", type=str, default='./checkpoint/raft-things.pth', help="path of the RAFT model")
        
        self.parser.add_argument("--video_path", type=str, help="path of the target video")
        self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output parsing maps")
        
    def parse(self):
        self.opt = self.parser.parse_args()
        args = vars(self.opt)
        print('Load options')
        for name, value in sorted(args.items()):
            print('%s: %s' % (str(name), str(value)))
        return self.opt                

# from RAFT
def warp(x, flo):
    """
    warp an image/tensor (im2) back to im1, according to the optical flow
    x: [B, C, H, W] (im2)
    flo: [B, 2, H, W] flow
    """
    B, C, H, W = x.size()
    # mesh grid 
    xx = torch.arange(0, W).view(1,-1).repeat(H,1)
    yy = torch.arange(0, H).view(-1,1).repeat(1,W)
    xx = xx.view(1,1,H,W).repeat(B,1,1,1)
    yy = yy.view(1,1,H,W).repeat(B,1,1,1)
    grid = torch.cat((xx,yy),1).float()


    #x = x.cuda()
    grid = grid.cuda()
    vgrid = grid + flo # B,2,H,W

    # scale grid to [-1,1] 
    ##2019 code
    vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone()/max(W-1,1)-1.0 
    vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone()/max(H-1,1)-1.0

    vgrid = vgrid.permute(0,2,3,1)
    output = nn.functional.grid_sample(x, vgrid,align_corners=True)
    mask = torch.autograd.Variable(torch.ones(x.size())).cuda()
    mask = nn.functional.grid_sample(mask, vgrid,align_corners=True)

    ##2019 author
    mask[mask<0.9999] = 0
    mask[mask>0] = 1

     ##2019 code
     # mask = torch.floor(torch.clamp(mask, 0 ,1))

    return output*mask, mask

    
if __name__ == "__main__":

    parser = Options()
    args = parser.parse()
    print('*'*98)
    
    
    device = "cuda"
    
    transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
    ])

    parser = argparse.ArgumentParser()
    parser.add_argument('--model', help="restore checkpoint")
    parser.add_argument('--small', action='store_true', help='use small model')
    parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
    parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation')

    raft_model = torch.nn.DataParallel(RAFT(parser.parse_args(['--model', args.raft_path])))
    raft_model.load_state_dict(torch.load(args.raft_path))

    raft_model = raft_model.module
    raft_model.to(device)
    raft_model.eval()

    parsingpredictor = BiSeNet(n_classes=19)
    parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
    parsingpredictor.to(device).eval()

    down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device).eval()

    print('Load models successfully!')
    
    window = args.window_size

    video_cap = cv2.VideoCapture(args.video_path)
    num = int(video_cap.get(7))

    Is = []
    for i in range(num):
        success, frame = video_cap.read()
        if success == False:
            break
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        with torch.no_grad():
            Is += [transform(frame).unsqueeze(dim=0).cpu()]
    video_cap.release()      

    # enlarge frames for more accurate parsing maps and optical flows     
    Is = F.upsample(torch.cat(Is, dim=0), scale_factor=2, mode='bilinear')
    Is_ = torch.cat((Is[0:window], Is, Is[-window:]), dim=0)

    print('Load video with %d frames successfully!'%(len(Is)))

    Ps = []
    for i in tqdm(range(len(Is))):
        with torch.no_grad():
            Ps += [parsingpredictor(2*Is[i:i+1].to(device))[0].detach().cpu()]
    Ps = torch.cat(Ps, dim=0)
    Ps_ = torch.cat((Ps[0:window], Ps, Ps[-window:]), dim=0)

    print('Predict parsing maps successfully!')
    
    
    # temporal weights of the (2*args.window_size+1) frames
    wt = torch.exp(-(torch.arange(2*window+1).float()-window)**2/(2*((window+0.5)**2))).reshape(2*window+1,1,1,1).to(device)
    
    parse = []
    for ii in tqdm(range(len(Is))):
        i = ii + window
        image2 = Is_[i-window:i+window+1].to(device)
        image1 = Is_[i].repeat(2*window+1,1,1,1).to(device)
        padder = InputPadder(image1.shape)
        image1, image2 = padder.pad(image1, image2)
        with torch.no_grad():
            flow_low, flow_up = raft_model((image1+1)*255.0/2, (image2+1)*255.0/2, iters=20, test_mode=True)
            output, mask = warp(torch.cat((image2, Ps_[i-window:i+window+1].to(device)), dim=1), flow_up)
            aligned_Is = output[:,0:3].detach()
            aligned_Ps = output[:,3:].detach()
            # the spatial weight
            ws = torch.exp(-((aligned_Is-image1)**2).mean(dim=1, keepdims=True)/(2*(0.2**2))) * mask[:,0:1]
            aligned_Ps[window] = Ps_[i].to(device)
            # the weight between i and i shoud be 1.0
            ws[window,:,:,:] = 1.0
            weights = ws*wt
            weights = weights / weights.sum(dim=(0), keepdims=True)
            fused_Ps = (aligned_Ps * weights).sum(dim=0, keepdims=True)
            parse += [down(fused_Ps).detach().cpu()]
    parse = torch.cat(parse, dim=0)
    
    basename = os.path.basename(args.video_path).split('.')[0]
    np.save(os.path.join(args.output_path, basename+'_parsingmap.npy'), parse.numpy())
    
    print('Done!')