Spaces:
Runtime error
Runtime error
Arnaudding001
commited on
Commit
•
3315f0a
1
Parent(s):
fc378c9
Create style_transfer.py
Browse files- style_transfer.py +232 -0
style_transfer.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import dlib
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from tqdm import tqdm
|
11 |
+
from model.vtoonify import VToonify
|
12 |
+
from model.bisenet.model import BiSeNet
|
13 |
+
from model.encoder.align_all_parallel import align_face
|
14 |
+
from util import save_image, load_image, visualize, load_psp_standalone, get_video_crop_parameter, tensor2cv2
|
15 |
+
|
16 |
+
|
17 |
+
class TestOptions():
|
18 |
+
def __init__(self):
|
19 |
+
|
20 |
+
self.parser = argparse.ArgumentParser(description="Style Transfer")
|
21 |
+
self.parser.add_argument("--content", type=str, default='./data/077436.jpg', help="path of the content image/video")
|
22 |
+
self.parser.add_argument("--style_id", type=int, default=26, help="the id of the style image")
|
23 |
+
self.parser.add_argument("--style_degree", type=float, default=0.5, help="style degree for VToonify-D")
|
24 |
+
self.parser.add_argument("--color_transfer", action="store_true", help="transfer the color of the style")
|
25 |
+
self.parser.add_argument("--ckpt", type=str, default='./checkpoint/vtoonify_d_cartoon/vtoonify_s_d.pt', help="path of the saved model")
|
26 |
+
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images")
|
27 |
+
self.parser.add_argument("--scale_image", action="store_true", help="resize and crop the image to best fit the model")
|
28 |
+
self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
|
29 |
+
self.parser.add_argument("--exstyle_path", type=str, default=None, help="path of the extrinsic style code")
|
30 |
+
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
|
31 |
+
self.parser.add_argument("--video", action="store_true", help="if true, video stylization; if false, image stylization")
|
32 |
+
self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu")
|
33 |
+
self.parser.add_argument("--backbone", type=str, default='dualstylegan', help="dualstylegan | toonify")
|
34 |
+
self.parser.add_argument("--padding", type=int, nargs=4, default=[200,200,200,200], help="left, right, top, bottom paddings to the face center")
|
35 |
+
self.parser.add_argument("--batch_size", type=int, default=4, help="batch size of frames when processing video")
|
36 |
+
self.parser.add_argument("--parsing_map_path", type=str, default=None, help="path of the refined parsing map of the target video")
|
37 |
+
|
38 |
+
def parse(self):
|
39 |
+
self.opt = self.parser.parse_args()
|
40 |
+
if self.opt.exstyle_path is None:
|
41 |
+
self.opt.exstyle_path = os.path.join(os.path.dirname(self.opt.ckpt), 'exstyle_code.npy')
|
42 |
+
args = vars(self.opt)
|
43 |
+
print('Load options')
|
44 |
+
for name, value in sorted(args.items()):
|
45 |
+
print('%s: %s' % (str(name), str(value)))
|
46 |
+
return self.opt
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
|
50 |
+
parser = TestOptions()
|
51 |
+
args = parser.parse()
|
52 |
+
print('*'*98)
|
53 |
+
|
54 |
+
|
55 |
+
device = "cpu" if args.cpu else "cuda"
|
56 |
+
|
57 |
+
transform = transforms.Compose([
|
58 |
+
transforms.ToTensor(),
|
59 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
|
60 |
+
])
|
61 |
+
|
62 |
+
vtoonify = VToonify(backbone = args.backbone)
|
63 |
+
vtoonify.load_state_dict(torch.load(args.ckpt, map_location=lambda storage, loc: storage)['g_ema'])
|
64 |
+
vtoonify.to(device)
|
65 |
+
|
66 |
+
parsingpredictor = BiSeNet(n_classes=19)
|
67 |
+
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
|
68 |
+
parsingpredictor.to(device).eval()
|
69 |
+
|
70 |
+
modelname = './checkpoint/shape_predictor_68_face_landmarks.dat'
|
71 |
+
if not os.path.exists(modelname):
|
72 |
+
import wget, bz2
|
73 |
+
wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2')
|
74 |
+
zipfile = bz2.BZ2File(modelname+'.bz2')
|
75 |
+
data = zipfile.read()
|
76 |
+
open(modelname, 'wb').write(data)
|
77 |
+
landmarkpredictor = dlib.shape_predictor(modelname)
|
78 |
+
|
79 |
+
pspencoder = load_psp_standalone(args.style_encoder_path, device)
|
80 |
+
|
81 |
+
if args.backbone == 'dualstylegan':
|
82 |
+
exstyles = np.load(args.exstyle_path, allow_pickle='TRUE').item()
|
83 |
+
stylename = list(exstyles.keys())[args.style_id]
|
84 |
+
exstyle = torch.tensor(exstyles[stylename]).to(device)
|
85 |
+
with torch.no_grad():
|
86 |
+
exstyle = vtoonify.zplus2wplus(exstyle)
|
87 |
+
|
88 |
+
if args.video and args.parsing_map_path is not None:
|
89 |
+
x_p_hat = torch.tensor(np.load(args.parsing_map_path))
|
90 |
+
|
91 |
+
print('Load models successfully!')
|
92 |
+
|
93 |
+
|
94 |
+
filename = args.content
|
95 |
+
basename = os.path.basename(filename).split('.')[0]
|
96 |
+
scale = 1
|
97 |
+
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
98 |
+
print('Processing ' + os.path.basename(filename) + ' with vtoonify_' + args.backbone[0])
|
99 |
+
if args.video:
|
100 |
+
cropname = os.path.join(args.output_path, basename + '_input.mp4')
|
101 |
+
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.mp4')
|
102 |
+
|
103 |
+
video_cap = cv2.VideoCapture(filename)
|
104 |
+
num = int(video_cap.get(7))
|
105 |
+
|
106 |
+
first_valid_frame = True
|
107 |
+
batch_frames = []
|
108 |
+
for i in tqdm(range(num)):
|
109 |
+
success, frame = video_cap.read()
|
110 |
+
if success == False:
|
111 |
+
assert('load video frames error')
|
112 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
113 |
+
# We proprocess the video by detecting the face in the first frame,
|
114 |
+
# and resizing the frame so that the eye distance is 64 pixels.
|
115 |
+
# Centered on the eyes, we crop the first frame to almost 400x400 (based on args.padding).
|
116 |
+
# All other frames use the same resizing and cropping parameters as the first frame.
|
117 |
+
if first_valid_frame:
|
118 |
+
if args.scale_image:
|
119 |
+
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
|
120 |
+
if paras is None:
|
121 |
+
continue
|
122 |
+
h,w,top,bottom,left,right,scale = paras
|
123 |
+
H, W = int(bottom-top), int(right-left)
|
124 |
+
# for HR video, we apply gaussian blur to the frames to avoid flickers caused by bilinear downsampling
|
125 |
+
# this can also prevent over-sharp stylization results.
|
126 |
+
if scale <= 0.75:
|
127 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
128 |
+
if scale <= 0.375:
|
129 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
130 |
+
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
131 |
+
else:
|
132 |
+
H, W = frame.shape[0], frame.shape[1]
|
133 |
+
|
134 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
135 |
+
videoWriter = cv2.VideoWriter(cropname, fourcc, video_cap.get(5), (W, H))
|
136 |
+
videoWriter2 = cv2.VideoWriter(savename, fourcc, video_cap.get(5), (4*W, 4*H))
|
137 |
+
|
138 |
+
# For each video, we detect and align the face in the first frame for pSp to obtain the style code.
|
139 |
+
# This style code is used for all other frames.
|
140 |
+
with torch.no_grad():
|
141 |
+
I = align_face(frame, landmarkpredictor)
|
142 |
+
I = transform(I).unsqueeze(dim=0).to(device)
|
143 |
+
s_w = pspencoder(I)
|
144 |
+
s_w = vtoonify.zplus2wplus(s_w)
|
145 |
+
if vtoonify.backbone == 'dualstylegan':
|
146 |
+
if args.color_transfer:
|
147 |
+
s_w = exstyle
|
148 |
+
else:
|
149 |
+
s_w[:,:7] = exstyle[:,:7]
|
150 |
+
first_valid_frame = False
|
151 |
+
elif args.scale_image:
|
152 |
+
if scale <= 0.75:
|
153 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
154 |
+
if scale <= 0.375:
|
155 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
156 |
+
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
157 |
+
|
158 |
+
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
159 |
+
|
160 |
+
batch_frames += [transform(frame).unsqueeze(dim=0).to(device)]
|
161 |
+
|
162 |
+
if len(batch_frames) == args.batch_size or (i+1) == num:
|
163 |
+
x = torch.cat(batch_frames, dim=0)
|
164 |
+
batch_frames = []
|
165 |
+
with torch.no_grad():
|
166 |
+
# parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
|
167 |
+
# followed by downsampling the parsing maps
|
168 |
+
if args.video and args.parsing_map_path is not None:
|
169 |
+
x_p = x_p_hat[i+1-x.size(0):i+1].to(device)
|
170 |
+
else:
|
171 |
+
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
172 |
+
scale_factor=0.5, recompute_scale_factor=False).detach()
|
173 |
+
# we give parsing maps lower weight (1/16)
|
174 |
+
inputs = torch.cat((x, x_p/16.), dim=1)
|
175 |
+
# d_s has no effect when backbone is toonify
|
176 |
+
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)
|
177 |
+
y_tilde = torch.clamp(y_tilde, -1, 1)
|
178 |
+
for k in range(y_tilde.size(0)):
|
179 |
+
videoWriter2.write(tensor2cv2(y_tilde[k].cpu()))
|
180 |
+
|
181 |
+
videoWriter.release()
|
182 |
+
videoWriter2.release()
|
183 |
+
video_cap.release()
|
184 |
+
|
185 |
+
|
186 |
+
else:
|
187 |
+
cropname = os.path.join(args.output_path, basename + '_input.jpg')
|
188 |
+
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.jpg')
|
189 |
+
|
190 |
+
frame = cv2.imread(filename)
|
191 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
192 |
+
|
193 |
+
# We detect the face in the image, and resize the image so that the eye distance is 64 pixels.
|
194 |
+
# Centered on the eyes, we crop the image to almost 400x400 (based on args.padding).
|
195 |
+
if args.scale_image:
|
196 |
+
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
|
197 |
+
if paras is not None:
|
198 |
+
h,w,top,bottom,left,right,scale = paras
|
199 |
+
H, W = int(bottom-top), int(right-left)
|
200 |
+
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
201 |
+
if scale <= 0.75:
|
202 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
203 |
+
if scale <= 0.375:
|
204 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
205 |
+
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
206 |
+
|
207 |
+
with torch.no_grad():
|
208 |
+
I = align_face(frame, landmarkpredictor)
|
209 |
+
I = transform(I).unsqueeze(dim=0).to(device)
|
210 |
+
s_w = pspencoder(I)
|
211 |
+
s_w = vtoonify.zplus2wplus(s_w)
|
212 |
+
if vtoonify.backbone == 'dualstylegan':
|
213 |
+
if args.color_transfer:
|
214 |
+
s_w = exstyle
|
215 |
+
else:
|
216 |
+
s_w[:,:7] = exstyle[:,:7]
|
217 |
+
|
218 |
+
x = transform(frame).unsqueeze(dim=0).to(device)
|
219 |
+
# parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
|
220 |
+
# followed by downsampling the parsing maps
|
221 |
+
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
222 |
+
scale_factor=0.5, recompute_scale_factor=False).detach()
|
223 |
+
# we give parsing maps lower weight (1/16)
|
224 |
+
inputs = torch.cat((x, x_p/16.), dim=1)
|
225 |
+
# d_s has no effect when backbone is toonify
|
226 |
+
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)
|
227 |
+
y_tilde = torch.clamp(y_tilde, -1, 1)
|
228 |
+
|
229 |
+
cv2.imwrite(cropname, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
230 |
+
save_image(y_tilde[0].cpu(), savename)
|
231 |
+
|
232 |
+
print('Transfer style successfully!')
|