Spaces:
Runtime error
Runtime error
Arnaudding001
commited on
Commit
•
511a2cd
1
Parent(s):
674f9be
Create raft_alt_cuda_corr_correlation_kernel.cu
Browse files
raft_alt_cuda_corr_correlation_kernel.cu
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <cuda.h>
|
3 |
+
#include <cuda_runtime.h>
|
4 |
+
#include <vector>
|
5 |
+
|
6 |
+
|
7 |
+
#define BLOCK_H 4
|
8 |
+
#define BLOCK_W 8
|
9 |
+
#define BLOCK_HW BLOCK_H * BLOCK_W
|
10 |
+
#define CHANNEL_STRIDE 32
|
11 |
+
|
12 |
+
|
13 |
+
__forceinline__ __device__
|
14 |
+
bool within_bounds(int h, int w, int H, int W) {
|
15 |
+
return h >= 0 && h < H && w >= 0 && w < W;
|
16 |
+
}
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
__global__ void corr_forward_kernel(
|
20 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
21 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
22 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
23 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr,
|
24 |
+
int r)
|
25 |
+
{
|
26 |
+
const int b = blockIdx.x;
|
27 |
+
const int h0 = blockIdx.y * blockDim.x;
|
28 |
+
const int w0 = blockIdx.z * blockDim.y;
|
29 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
30 |
+
|
31 |
+
const int H1 = fmap1.size(1);
|
32 |
+
const int W1 = fmap1.size(2);
|
33 |
+
const int H2 = fmap2.size(1);
|
34 |
+
const int W2 = fmap2.size(2);
|
35 |
+
const int N = coords.size(1);
|
36 |
+
const int C = fmap1.size(3);
|
37 |
+
|
38 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
39 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
40 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
41 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
42 |
+
|
43 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
44 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
45 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
46 |
+
int h1 = h0 + k1 / BLOCK_W;
|
47 |
+
int w1 = w0 + k1 % BLOCK_W;
|
48 |
+
int c1 = tid % CHANNEL_STRIDE;
|
49 |
+
|
50 |
+
auto fptr = fmap1[b][h1][w1];
|
51 |
+
if (within_bounds(h1, w1, H1, W1))
|
52 |
+
f1[c1][k1] = fptr[c+c1];
|
53 |
+
else
|
54 |
+
f1[c1][k1] = 0.0;
|
55 |
+
}
|
56 |
+
|
57 |
+
__syncthreads();
|
58 |
+
|
59 |
+
for (int n=0; n<N; n++) {
|
60 |
+
int h1 = h0 + threadIdx.x;
|
61 |
+
int w1 = w0 + threadIdx.y;
|
62 |
+
if (within_bounds(h1, w1, H1, W1)) {
|
63 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
64 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
65 |
+
}
|
66 |
+
|
67 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
68 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
69 |
+
|
70 |
+
int rd = 2*r + 1;
|
71 |
+
for (int iy=0; iy<rd+1; iy++) {
|
72 |
+
for (int ix=0; ix<rd+1; ix++) {
|
73 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
74 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
75 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
76 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
77 |
+
int c2 = tid % CHANNEL_STRIDE;
|
78 |
+
|
79 |
+
auto fptr = fmap2[b][h2][w2];
|
80 |
+
if (within_bounds(h2, w2, H2, W2))
|
81 |
+
f2[c2][k1] = fptr[c+c2];
|
82 |
+
else
|
83 |
+
f2[c2][k1] = 0.0;
|
84 |
+
}
|
85 |
+
|
86 |
+
__syncthreads();
|
87 |
+
|
88 |
+
scalar_t s = 0.0;
|
89 |
+
for (int k=0; k<CHANNEL_STRIDE; k++)
|
90 |
+
s += f1[k][tid] * f2[k][tid];
|
91 |
+
|
92 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
93 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
94 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
95 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
96 |
+
|
97 |
+
scalar_t nw = s * (dy) * (dx);
|
98 |
+
scalar_t ne = s * (dy) * (1-dx);
|
99 |
+
scalar_t sw = s * (1-dy) * (dx);
|
100 |
+
scalar_t se = s * (1-dy) * (1-dx);
|
101 |
+
|
102 |
+
scalar_t* corr_ptr = &corr[b][n][0][h1][w1];
|
103 |
+
|
104 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
105 |
+
*(corr_ptr + ix_nw) += nw;
|
106 |
+
|
107 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
108 |
+
*(corr_ptr + ix_ne) += ne;
|
109 |
+
|
110 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
111 |
+
*(corr_ptr + ix_sw) += sw;
|
112 |
+
|
113 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
114 |
+
*(corr_ptr + ix_se) += se;
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
template <typename scalar_t>
|
123 |
+
__global__ void corr_backward_kernel(
|
124 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
125 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
126 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
127 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr_grad,
|
128 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1_grad,
|
129 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2_grad,
|
130 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords_grad,
|
131 |
+
int r)
|
132 |
+
{
|
133 |
+
|
134 |
+
const int b = blockIdx.x;
|
135 |
+
const int h0 = blockIdx.y * blockDim.x;
|
136 |
+
const int w0 = blockIdx.z * blockDim.y;
|
137 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
138 |
+
|
139 |
+
const int H1 = fmap1.size(1);
|
140 |
+
const int W1 = fmap1.size(2);
|
141 |
+
const int H2 = fmap2.size(1);
|
142 |
+
const int W2 = fmap2.size(2);
|
143 |
+
const int N = coords.size(1);
|
144 |
+
const int C = fmap1.size(3);
|
145 |
+
|
146 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
147 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
148 |
+
|
149 |
+
__shared__ scalar_t f1_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
150 |
+
__shared__ scalar_t f2_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
151 |
+
|
152 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
153 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
154 |
+
|
155 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
156 |
+
|
157 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
158 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
159 |
+
int h1 = h0 + k1 / BLOCK_W;
|
160 |
+
int w1 = w0 + k1 % BLOCK_W;
|
161 |
+
int c1 = tid % CHANNEL_STRIDE;
|
162 |
+
|
163 |
+
auto fptr = fmap1[b][h1][w1];
|
164 |
+
if (within_bounds(h1, w1, H1, W1))
|
165 |
+
f1[c1][k1] = fptr[c+c1];
|
166 |
+
else
|
167 |
+
f1[c1][k1] = 0.0;
|
168 |
+
|
169 |
+
f1_grad[c1][k1] = 0.0;
|
170 |
+
}
|
171 |
+
|
172 |
+
__syncthreads();
|
173 |
+
|
174 |
+
int h1 = h0 + threadIdx.x;
|
175 |
+
int w1 = w0 + threadIdx.y;
|
176 |
+
|
177 |
+
for (int n=0; n<N; n++) {
|
178 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
179 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
180 |
+
|
181 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
182 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
183 |
+
|
184 |
+
int rd = 2*r + 1;
|
185 |
+
for (int iy=0; iy<rd+1; iy++) {
|
186 |
+
for (int ix=0; ix<rd+1; ix++) {
|
187 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
188 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
189 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
190 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
191 |
+
int c2 = tid % CHANNEL_STRIDE;
|
192 |
+
|
193 |
+
auto fptr = fmap2[b][h2][w2];
|
194 |
+
if (within_bounds(h2, w2, H2, W2))
|
195 |
+
f2[c2][k1] = fptr[c+c2];
|
196 |
+
else
|
197 |
+
f2[c2][k1] = 0.0;
|
198 |
+
|
199 |
+
f2_grad[c2][k1] = 0.0;
|
200 |
+
}
|
201 |
+
|
202 |
+
__syncthreads();
|
203 |
+
|
204 |
+
const scalar_t* grad_ptr = &corr_grad[b][n][0][h1][w1];
|
205 |
+
scalar_t g = 0.0;
|
206 |
+
|
207 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
208 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
209 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
210 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
211 |
+
|
212 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
213 |
+
g += *(grad_ptr + ix_nw) * dy * dx;
|
214 |
+
|
215 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
216 |
+
g += *(grad_ptr + ix_ne) * dy * (1-dx);
|
217 |
+
|
218 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
219 |
+
g += *(grad_ptr + ix_sw) * (1-dy) * dx;
|
220 |
+
|
221 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
222 |
+
g += *(grad_ptr + ix_se) * (1-dy) * (1-dx);
|
223 |
+
|
224 |
+
for (int k=0; k<CHANNEL_STRIDE; k++) {
|
225 |
+
f1_grad[k][tid] += g * f2[k][tid];
|
226 |
+
f2_grad[k][tid] += g * f1[k][tid];
|
227 |
+
}
|
228 |
+
|
229 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
230 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
231 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
232 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
233 |
+
int c2 = tid % CHANNEL_STRIDE;
|
234 |
+
|
235 |
+
scalar_t* fptr = &fmap2_grad[b][h2][w2][0];
|
236 |
+
if (within_bounds(h2, w2, H2, W2))
|
237 |
+
atomicAdd(fptr+c+c2, f2_grad[c2][k1]);
|
238 |
+
}
|
239 |
+
}
|
240 |
+
}
|
241 |
+
}
|
242 |
+
__syncthreads();
|
243 |
+
|
244 |
+
|
245 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
246 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
247 |
+
int h1 = h0 + k1 / BLOCK_W;
|
248 |
+
int w1 = w0 + k1 % BLOCK_W;
|
249 |
+
int c1 = tid % CHANNEL_STRIDE;
|
250 |
+
|
251 |
+
scalar_t* fptr = &fmap1_grad[b][h1][w1][0];
|
252 |
+
if (within_bounds(h1, w1, H1, W1))
|
253 |
+
fptr[c+c1] += f1_grad[c1][k1];
|
254 |
+
}
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
std::vector<torch::Tensor> corr_cuda_forward(
|
261 |
+
torch::Tensor fmap1,
|
262 |
+
torch::Tensor fmap2,
|
263 |
+
torch::Tensor coords,
|
264 |
+
int radius)
|
265 |
+
{
|
266 |
+
const auto B = coords.size(0);
|
267 |
+
const auto N = coords.size(1);
|
268 |
+
const auto H = coords.size(2);
|
269 |
+
const auto W = coords.size(3);
|
270 |
+
|
271 |
+
const auto rd = 2 * radius + 1;
|
272 |
+
auto opts = fmap1.options();
|
273 |
+
auto corr = torch::zeros({B, N, rd*rd, H, W}, opts);
|
274 |
+
|
275 |
+
const dim3 blocks(B, (H+BLOCK_H-1)/BLOCK_H, (W+BLOCK_W-1)/BLOCK_W);
|
276 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
277 |
+
|
278 |
+
corr_forward_kernel<float><<<blocks, threads>>>(
|
279 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
280 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
281 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
282 |
+
corr.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
283 |
+
radius);
|
284 |
+
|
285 |
+
return {corr};
|
286 |
+
}
|
287 |
+
|
288 |
+
std::vector<torch::Tensor> corr_cuda_backward(
|
289 |
+
torch::Tensor fmap1,
|
290 |
+
torch::Tensor fmap2,
|
291 |
+
torch::Tensor coords,
|
292 |
+
torch::Tensor corr_grad,
|
293 |
+
int radius)
|
294 |
+
{
|
295 |
+
const auto B = coords.size(0);
|
296 |
+
const auto N = coords.size(1);
|
297 |
+
|
298 |
+
const auto H1 = fmap1.size(1);
|
299 |
+
const auto W1 = fmap1.size(2);
|
300 |
+
const auto H2 = fmap2.size(1);
|
301 |
+
const auto W2 = fmap2.size(2);
|
302 |
+
const auto C = fmap1.size(3);
|
303 |
+
|
304 |
+
auto opts = fmap1.options();
|
305 |
+
auto fmap1_grad = torch::zeros({B, H1, W1, C}, opts);
|
306 |
+
auto fmap2_grad = torch::zeros({B, H2, W2, C}, opts);
|
307 |
+
auto coords_grad = torch::zeros({B, N, H1, W1, 2}, opts);
|
308 |
+
|
309 |
+
const dim3 blocks(B, (H1+BLOCK_H-1)/BLOCK_H, (W1+BLOCK_W-1)/BLOCK_W);
|
310 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
311 |
+
|
312 |
+
|
313 |
+
corr_backward_kernel<float><<<blocks, threads>>>(
|
314 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
315 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
316 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
317 |
+
corr_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
318 |
+
fmap1_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
319 |
+
fmap2_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
320 |
+
coords_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
321 |
+
radius);
|
322 |
+
|
323 |
+
return {fmap1_grad, fmap2_grad, coords_grad};
|
324 |
+
}
|