Spaces:
Runtime error
Runtime error
Arnaudding001
commited on
Commit
•
de0dd3a
1
Parent(s):
cfd00dd
Create rft_demo.py
Browse files- rft_demo.py +75 -0
rft_demo.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('core')
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
import glob
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from raft import RAFT
|
13 |
+
from utils import flow_viz
|
14 |
+
from utils.utils import InputPadder
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
DEVICE = 'cuda'
|
19 |
+
|
20 |
+
def load_image(imfile):
|
21 |
+
img = np.array(Image.open(imfile)).astype(np.uint8)
|
22 |
+
img = torch.from_numpy(img).permute(2, 0, 1).float()
|
23 |
+
return img[None].to(DEVICE)
|
24 |
+
|
25 |
+
|
26 |
+
def viz(img, flo):
|
27 |
+
img = img[0].permute(1,2,0).cpu().numpy()
|
28 |
+
flo = flo[0].permute(1,2,0).cpu().numpy()
|
29 |
+
|
30 |
+
# map flow to rgb image
|
31 |
+
flo = flow_viz.flow_to_image(flo)
|
32 |
+
img_flo = np.concatenate([img, flo], axis=0)
|
33 |
+
|
34 |
+
# import matplotlib.pyplot as plt
|
35 |
+
# plt.imshow(img_flo / 255.0)
|
36 |
+
# plt.show()
|
37 |
+
|
38 |
+
cv2.imshow('image', img_flo[:, :, [2,1,0]]/255.0)
|
39 |
+
cv2.waitKey()
|
40 |
+
|
41 |
+
|
42 |
+
def demo(args):
|
43 |
+
model = torch.nn.DataParallel(RAFT(args))
|
44 |
+
model.load_state_dict(torch.load(args.model))
|
45 |
+
|
46 |
+
model = model.module
|
47 |
+
model.to(DEVICE)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
images = glob.glob(os.path.join(args.path, '*.png')) + \
|
52 |
+
glob.glob(os.path.join(args.path, '*.jpg'))
|
53 |
+
|
54 |
+
images = sorted(images)
|
55 |
+
for imfile1, imfile2 in zip(images[:-1], images[1:]):
|
56 |
+
image1 = load_image(imfile1)
|
57 |
+
image2 = load_image(imfile2)
|
58 |
+
|
59 |
+
padder = InputPadder(image1.shape)
|
60 |
+
image1, image2 = padder.pad(image1, image2)
|
61 |
+
|
62 |
+
flow_low, flow_up = model(image1, image2, iters=20, test_mode=True)
|
63 |
+
viz(image1, flow_up)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
parser = argparse.ArgumentParser()
|
68 |
+
parser.add_argument('--model', help="restore checkpoint")
|
69 |
+
parser.add_argument('--path', help="dataset for evaluation")
|
70 |
+
parser.add_argument('--small', action='store_true', help='use small model')
|
71 |
+
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
72 |
+
parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation')
|
73 |
+
args = parser.parse_args()
|
74 |
+
|
75 |
+
demo(args)
|