# Data loading based on https://github.com/NVIDIA/flownet2-pytorch import numpy as np import torch import torch.utils.data as data import torch.nn.functional as F import os import math import random from glob import glob import os.path as osp from raft_core_utils import frame_utils from raft_core_utils_augmentor import FlowAugmentor, SparseFlowAugmentor class FlowDataset(data.Dataset): def __init__(self, aug_params=None, sparse=False): self.augmentor = None self.sparse = sparse if aug_params is not None: if sparse: self.augmentor = SparseFlowAugmentor(**aug_params) else: self.augmentor = FlowAugmentor(**aug_params) self.is_test = False self.init_seed = False self.flow_list = [] self.image_list = [] self.extra_info = [] def __getitem__(self, index): if self.is_test: img1 = frame_utils.read_gen(self.image_list[index][0]) img2 = frame_utils.read_gen(self.image_list[index][1]) img1 = np.array(img1).astype(np.uint8)[..., :3] img2 = np.array(img2).astype(np.uint8)[..., :3] img1 = torch.from_numpy(img1).permute(2, 0, 1).float() img2 = torch.from_numpy(img2).permute(2, 0, 1).float() return img1, img2, self.extra_info[index] if not self.init_seed: worker_info = torch.utils.data.get_worker_info() if worker_info is not None: torch.manual_seed(worker_info.id) np.random.seed(worker_info.id) random.seed(worker_info.id) self.init_seed = True index = index % len(self.image_list) valid = None if self.sparse: flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) else: flow = frame_utils.read_gen(self.flow_list[index]) img1 = frame_utils.read_gen(self.image_list[index][0]) img2 = frame_utils.read_gen(self.image_list[index][1]) flow = np.array(flow).astype(np.float32) img1 = np.array(img1).astype(np.uint8) img2 = np.array(img2).astype(np.uint8) # grayscale images if len(img1.shape) == 2: img1 = np.tile(img1[...,None], (1, 1, 3)) img2 = np.tile(img2[...,None], (1, 1, 3)) else: img1 = img1[..., :3] img2 = img2[..., :3] if self.augmentor is not None: if self.sparse: img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) else: img1, img2, flow = self.augmentor(img1, img2, flow) img1 = torch.from_numpy(img1).permute(2, 0, 1).float() img2 = torch.from_numpy(img2).permute(2, 0, 1).float() flow = torch.from_numpy(flow).permute(2, 0, 1).float() if valid is not None: valid = torch.from_numpy(valid) else: valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) return img1, img2, flow, valid.float() def __rmul__(self, v): self.flow_list = v * self.flow_list self.image_list = v * self.image_list return self def __len__(self): return len(self.image_list) class MpiSintel(FlowDataset): def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'): super(MpiSintel, self).__init__(aug_params) flow_root = osp.join(root, split, 'flow') image_root = osp.join(root, split, dstype) if split == 'test': self.is_test = True for scene in os.listdir(image_root): image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) for i in range(len(image_list)-1): self.image_list += [ [image_list[i], image_list[i+1]] ] self.extra_info += [ (scene, i) ] # scene and frame_id if split != 'test': self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) class FlyingChairs(FlowDataset): def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'): super(FlyingChairs, self).__init__(aug_params) images = sorted(glob(osp.join(root, '*.ppm'))) flows = sorted(glob(osp.join(root, '*.flo'))) assert (len(images)//2 == len(flows)) split_list = np.loadtxt('chairs_split.txt', dtype=np.int32) for i in range(len(flows)): xid = split_list[i] if (split=='training' and xid==1) or (split=='validation' and xid==2): self.flow_list += [ flows[i] ] self.image_list += [ [images[2*i], images[2*i+1]] ] class FlyingThings3D(FlowDataset): def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'): super(FlyingThings3D, self).__init__(aug_params) for cam in ['left']: for direction in ['into_future', 'into_past']: image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*'))) image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*'))) flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) for idir, fdir in zip(image_dirs, flow_dirs): images = sorted(glob(osp.join(idir, '*.png')) ) flows = sorted(glob(osp.join(fdir, '*.pfm')) ) for i in range(len(flows)-1): if direction == 'into_future': self.image_list += [ [images[i], images[i+1]] ] self.flow_list += [ flows[i] ] elif direction == 'into_past': self.image_list += [ [images[i+1], images[i]] ] self.flow_list += [ flows[i+1] ] class KITTI(FlowDataset): def __init__(self, aug_params=None, split='training', root='datasets/KITTI'): super(KITTI, self).__init__(aug_params, sparse=True) if split == 'testing': self.is_test = True root = osp.join(root, split) images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) for img1, img2 in zip(images1, images2): frame_id = img1.split('/')[-1] self.extra_info += [ [frame_id] ] self.image_list += [ [img1, img2] ] if split == 'training': self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) class HD1K(FlowDataset): def __init__(self, aug_params=None, root='datasets/HD1k'): super(HD1K, self).__init__(aug_params, sparse=True) seq_ix = 0 while 1: flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) if len(flows) == 0: break for i in range(len(flows)-1): self.flow_list += [flows[i]] self.image_list += [ [images[i], images[i+1]] ] seq_ix += 1 def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): """ Create the data loader for the corresponding trainign set """ if args.stage == 'chairs': aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} train_dataset = FlyingChairs(aug_params, split='training') elif args.stage == 'things': aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') train_dataset = clean_dataset + final_dataset elif args.stage == 'sintel': aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} things = FlyingThings3D(aug_params, dstype='frames_cleanpass') sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') sintel_final = MpiSintel(aug_params, split='training', dstype='final') if TRAIN_DS == 'C+T+K+S+H': kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}) hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}) train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things elif TRAIN_DS == 'C+T+K/S': train_dataset = 100*sintel_clean + 100*sintel_final + things elif args.stage == 'kitti': aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} train_dataset = KITTI(aug_params, split='training') train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=False, shuffle=True, num_workers=4, drop_last=True) print('Training with %d image pairs' % len(train_dataset)) return train_loader