import torch from torch import nn from encoder_encoders_model_irse import Backbone class IDLoss(nn.Module): def __init__(self, model_paths): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths)) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, y): n_samples = y_hat.shape[0] y_feats = self.extract_feats(y) # Otherwise use the feature from there y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() loss = 0 count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) loss += 1 - diff_target count += 1 return loss / count