Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
from __future__ import annotations | |
import ast | |
import logging | |
import argparse | |
import contextlib | |
import json | |
import os | |
import re | |
import sys | |
from enum import IntEnum | |
from pathlib import Path | |
from hashlib import sha256 | |
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast | |
from itertools import chain | |
import math | |
import numpy as np | |
import torch | |
if TYPE_CHECKING: | |
from torch import Tensor | |
if 'NO_LOCAL_GGUF' not in os.environ: | |
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) | |
import gguf | |
logger = logging.getLogger("hf-to-gguf") | |
###### MODEL DEFINITIONS ###### | |
class SentencePieceTokenTypes(IntEnum): | |
NORMAL = 1 | |
UNKNOWN = 2 | |
CONTROL = 3 | |
USER_DEFINED = 4 | |
UNUSED = 5 | |
BYTE = 6 | |
AnyModel = TypeVar("AnyModel", bound="type[Model]") | |
class Model: | |
_model_classes: dict[str, type[Model]] = {} | |
dir_model: Path | |
ftype: gguf.LlamaFileType | |
fname_out: Path | |
is_big_endian: bool | |
endianess: gguf.GGUFEndian | |
use_temp_file: bool | |
lazy: bool | |
part_names: list[str] | |
is_safetensors: bool | |
hparams: dict[str, Any] | |
block_count: int | |
tensor_map: gguf.TensorNameMap | |
tensor_names: set[str] | None | |
gguf_writer: gguf.GGUFWriter | |
model_name: str | None | |
metadata_override: Path | None | |
dir_model_card: Path | |
# subclasses should define this! | |
model_arch: gguf.MODEL_ARCH | |
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False, | |
use_temp_file: bool = False, eager: bool = False, | |
metadata_override: Path | None = None, model_name: str | None = None, | |
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, | |
small_first_shard: bool = False, hparams: dict[str, Any] | None = None): | |
if type(self) is Model: | |
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") | |
self.dir_model = dir_model | |
self.ftype = ftype | |
self.fname_out = fname_out | |
self.is_big_endian = is_big_endian | |
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE | |
self.use_temp_file = use_temp_file | |
self.lazy = not eager | |
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") | |
self.is_safetensors = len(self.part_names) > 0 | |
if not self.is_safetensors: | |
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") | |
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams | |
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"]) | |
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) | |
self.tensor_names = None | |
self.metadata_override = metadata_override | |
self.model_name = model_name | |
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py | |
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type | |
if self.ftype == gguf.LlamaFileType.GUESSED: | |
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. | |
_, first_tensor = next(self.get_tensors()) | |
if first_tensor.dtype == torch.float16: | |
logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})") | |
self.ftype = gguf.LlamaFileType.MOSTLY_F16 | |
else: | |
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") | |
self.ftype = gguf.LlamaFileType.MOSTLY_BF16 | |
# Configure GGUF Writer | |
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, | |
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard) | |
def __init_subclass__(cls): | |
# can't use an abstract property, because overriding it without type errors | |
# would require using decorated functions instead of simply defining the property | |
if "model_arch" not in cls.__dict__: | |
raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}") | |
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: | |
key = next((k for k in keys if k in self.hparams), None) | |
if key is not None: | |
return self.hparams[key] | |
if optional: | |
return None | |
raise KeyError(f"could not find any of: {keys}") | |
def set_vocab(self): | |
self._set_vocab_gpt2() | |
def get_tensors(self) -> Iterator[tuple[str, Tensor]]: | |
tensor_names_from_parts: set[str] = set() | |
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin" | |
index_name += ".index.json" | |
index_file = self.dir_model / index_name | |
if index_file.is_file(): | |
self.tensor_names = set() | |
logger.info(f"gguf: loading model weight map from '{index_name}'") | |
with open(index_file, "r", encoding="utf-8") as f: | |
index: dict[str, Any] = json.load(f) | |
weight_map = index.get("weight_map") | |
if weight_map is None or not isinstance(weight_map, dict): | |
raise ValueError(f"Can't load 'weight_map' from {index_name!r}") | |
self.tensor_names.update(weight_map.keys()) | |
else: | |
self.tensor_names = tensor_names_from_parts | |
weight_map = {} | |
for part_name in self.part_names: | |
logger.info(f"gguf: loading model part '{part_name}'") | |
ctx: ContextManager[Any] | |
if self.is_safetensors: | |
from safetensors import safe_open | |
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) | |
else: | |
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) | |
with ctx as model_part: | |
tensor_names_from_parts.update(model_part.keys()) | |
for name in model_part.keys(): | |
if self.is_safetensors: | |
if self.lazy: | |
data = model_part.get_slice(name) | |
data = LazyTorchTensor.from_safetensors_slice(data) | |
else: | |
data = model_part.get_tensor(name) | |
else: | |
data = model_part[name] | |
if self.lazy: | |
data = LazyTorchTensor.from_eager(data) | |
yield name, data | |
# verify tensor name presence and identify potentially missing files | |
if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0: | |
missing = sorted(self.tensor_names.difference(tensor_names_from_parts)) | |
extra = sorted(tensor_names_from_parts.difference(self.tensor_names)) | |
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map)) | |
if len(extra) == 0 and len(missing_files) > 0: | |
raise ValueError(f"Missing or incomplete model files: {missing_files}") | |
else: | |
raise ValueError("Mismatch between weight map and model parts for tensor names:\n" | |
f"Missing tensors: {missing}\n" | |
f"Extra tensors: {extra}") | |
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str: | |
if key not in gguf.MODEL_TENSORS[self.model_arch]: | |
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}") | |
name: str = gguf.TENSOR_NAMES[key] | |
if "{bid}" in name: | |
assert bid is not None | |
name = name.format(bid=bid) | |
return name + suffix | |
def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool: | |
if key not in gguf.MODEL_TENSORS[self.model_arch]: | |
return False | |
key_name: str = gguf.TENSOR_NAMES[key] | |
if "{bid}" in key_name: | |
if bid is None: | |
return False | |
key_name = key_name.format(bid=bid) | |
else: | |
if bid is not None: | |
return False | |
return name == (key_name + suffix) | |
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str: | |
new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes) | |
if new_name is None: | |
raise ValueError(f"Can not map tensor {name!r}") | |
return new_name | |
def set_gguf_parameters(self): | |
self.gguf_writer.add_block_count(self.block_count) | |
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: | |
self.gguf_writer.add_context_length(n_ctx) | |
logger.info(f"gguf: context length = {n_ctx}") | |
n_embd = self.find_hparam(["hidden_size", "n_embd"]) | |
self.gguf_writer.add_embedding_length(n_embd) | |
logger.info(f"gguf: embedding length = {n_embd}") | |
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: | |
self.gguf_writer.add_feed_forward_length(n_ff) | |
logger.info(f"gguf: feed forward length = {n_ff}") | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
self.gguf_writer.add_head_count(n_head) | |
logger.info(f"gguf: head count = {n_head}") | |
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: | |
self.gguf_writer.add_head_count_kv(n_head_kv) | |
logger.info(f"gguf: key-value head count = {n_head_kv}") | |
if (rope_theta := self.hparams.get("rope_theta")) is not None: | |
self.gguf_writer.add_rope_freq_base(rope_theta) | |
logger.info(f"gguf: rope theta = {rope_theta}") | |
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: | |
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) | |
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") | |
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: | |
self.gguf_writer.add_layer_norm_eps(f_norm_eps) | |
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") | |
if (n_experts := self.hparams.get("num_local_experts")) is not None: | |
self.gguf_writer.add_expert_count(n_experts) | |
logger.info(f"gguf: expert count = {n_experts}") | |
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: | |
self.gguf_writer.add_expert_used_count(n_experts_used) | |
logger.info(f"gguf: experts used count = {n_experts_used}") | |
if (head_dim := self.hparams.get("head_dim")) is not None: | |
self.gguf_writer.add_key_length(head_dim) | |
self.gguf_writer.add_value_length(head_dim) | |
self.gguf_writer.add_file_type(self.ftype) | |
logger.info(f"gguf: file type = {self.ftype}") | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
return [(self.map_tensor_name(name), data_torch)] | |
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: | |
del name, new_name, bid, n_dims # unused | |
return False | |
# some models need extra generated tensors (like rope_freqs) | |
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: | |
return () | |
def prepare_tensors(self): | |
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") | |
for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()): | |
# we don't need these | |
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): | |
continue | |
old_dtype = data_torch.dtype | |
# convert any unsupported data types to float32 | |
if data_torch.dtype not in (torch.float16, torch.float32): | |
data_torch = data_torch.to(torch.float32) | |
# use the first number-like part of the tensor name as the block id | |
bid = None | |
for part in name.split("."): | |
if part.isdecimal(): | |
bid = int(part) | |
break | |
for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)): | |
data = data_torch.squeeze().numpy() | |
# if data ends up empty, it means data_torch was a scalar tensor -> restore | |
if len(data.shape) == 0: | |
data = data_torch.numpy() | |
n_dims = len(data.shape) | |
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) | |
# Most of the codebase that takes in 1D tensors or norms only handles F32 tensors | |
if n_dims <= 1 or new_name.endswith("_norm.weight"): | |
data_qtype = gguf.GGMLQuantizationType.F32 | |
# Conditions should closely match those in llama_model_quantize_internal in llama.cpp | |
# Some tensor types are always in float32 | |
if data_qtype is False and ( | |
any( | |
self.match_model_tensor_name(new_name, key, bid) | |
for key in ( | |
gguf.MODEL_TENSOR.FFN_GATE_INP, | |
gguf.MODEL_TENSOR.POS_EMBD, | |
gguf.MODEL_TENSOR.TOKEN_TYPES, | |
gguf.MODEL_TENSOR.SSM_CONV1D, | |
gguf.MODEL_TENSOR.TIME_MIX_FIRST, | |
gguf.MODEL_TENSOR.TIME_MIX_W1, | |
gguf.MODEL_TENSOR.TIME_MIX_W2, | |
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1, | |
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2, | |
) | |
) | |
or not new_name.endswith(".weight") | |
): | |
data_qtype = gguf.GGMLQuantizationType.F32 | |
if data_qtype is False and any( | |
self.match_model_tensor_name(new_name, key, bid) | |
for key in ( | |
gguf.MODEL_TENSOR.TOKEN_EMBD, | |
gguf.MODEL_TENSOR.OUTPUT, | |
) | |
): | |
if self.ftype in ( | |
gguf.LlamaFileType.MOSTLY_TQ1_0, | |
gguf.LlamaFileType.MOSTLY_TQ2_0, | |
): | |
# TODO: use Q4_K and Q6_K | |
data_qtype = gguf.GGMLQuantizationType.F16 | |
# No override (data_qtype is False), or wants to be quantized (data_qtype is True) | |
if isinstance(data_qtype, bool): | |
if self.ftype == gguf.LlamaFileType.ALL_F32: | |
data_qtype = gguf.GGMLQuantizationType.F32 | |
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16: | |
data_qtype = gguf.GGMLQuantizationType.F16 | |
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: | |
data_qtype = gguf.GGMLQuantizationType.BF16 | |
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0: | |
data_qtype = gguf.GGMLQuantizationType.Q8_0 | |
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0: | |
data_qtype = gguf.GGMLQuantizationType.TQ1_0 | |
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0: | |
data_qtype = gguf.GGMLQuantizationType.TQ2_0 | |
else: | |
raise ValueError(f"Unknown file type: {self.ftype.name}") | |
try: | |
data = gguf.quants.quantize(data, data_qtype) | |
except gguf.QuantError as e: | |
logger.warning("%s, %s", e, "falling back to F16") | |
data_qtype = gguf.GGMLQuantizationType.F16 | |
data = gguf.quants.quantize(data, data_qtype) | |
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape | |
# reverse shape to make it similar to the internal ggml dimension order | |
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}" | |
# n_dims is implicit in the shape | |
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") | |
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) | |
def set_type(self): | |
self.gguf_writer.add_type(gguf.GGUFType.MODEL) | |
def prepare_metadata(self, vocab_only: bool): | |
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count() | |
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params) | |
# Fallback to model directory name if metadata name is still missing | |
if self.metadata.name is None: | |
self.metadata.name = self.dir_model.name | |
# Generate parameter weight class (useful for leader boards) if not yet determined | |
if self.metadata.size_label is None and total_params > 0: | |
self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count) | |
# Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0' | |
output_type: str = self.ftype.name.partition("_")[2] | |
# Filename Output | |
if self.fname_out.is_dir(): | |
# Generate default filename based on model specification and available metadata | |
if not vocab_only: | |
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None) | |
else: | |
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab") | |
# Use the default filename | |
self.fname_out = self.fname_out / f"{fname_default}.gguf" | |
else: | |
# Output path is a custom defined templated filename | |
# Note: `not is_dir()` is used because `.is_file()` will not detect | |
# file template strings as it doesn't actually exist as a file | |
# Process templated file name with the output ftype, useful with the "auto" ftype | |
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) | |
self.set_type() | |
logger.info("Set meta model") | |
self.metadata.set_gguf_meta_model(self.gguf_writer) | |
logger.info("Set model parameters") | |
self.set_gguf_parameters() | |
logger.info("Set model tokenizer") | |
self.set_vocab() | |
logger.info("Set model quantization version") | |
self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) | |
def write(self): | |
self.prepare_tensors() | |
self.prepare_metadata(vocab_only=False) | |
self.gguf_writer.write_header_to_file(path=self.fname_out) | |
self.gguf_writer.write_kv_data_to_file() | |
self.gguf_writer.write_tensors_to_file(progress=True) | |
self.gguf_writer.close() | |
def write_vocab(self): | |
if len(self.gguf_writer.tensors) != 1: | |
raise ValueError('Splitting the vocabulary is not supported') | |
self.prepare_metadata(vocab_only=True) | |
self.gguf_writer.write_header_to_file(path=self.fname_out) | |
self.gguf_writer.write_kv_data_to_file() | |
self.gguf_writer.close() | |
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]: | |
part_names: list[str] = [] | |
for filename in os.listdir(dir_model): | |
if filename.startswith(prefix) and filename.endswith(suffix): | |
part_names.append(filename) | |
part_names.sort() | |
return part_names | |
def load_hparams(dir_model: Path): | |
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | |
return json.load(f) | |
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: | |
assert names | |
def func(modelcls: AnyModel) -> AnyModel: | |
for name in names: | |
cls._model_classes[name] = modelcls | |
return modelcls | |
return func | |
def from_model_architecture(cls, arch: str) -> type[Model]: | |
try: | |
return cls._model_classes[arch] | |
except KeyError: | |
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None | |
def does_token_look_special(self, token: str | bytes) -> bool: | |
if isinstance(token, (bytes, bytearray)): | |
token_text = token.decode(encoding="utf-8") | |
elif isinstance(token, memoryview): | |
token_text = token.tobytes().decode(encoding="utf-8") | |
else: | |
token_text = token | |
# Some models mark some added tokens which ought to be control tokens as not special. | |
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2}) | |
seems_special = token_text in ( | |
"<pad>", # deepseek-coder | |
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2} | |
) | |
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) | |
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder | |
# TODO: should these be marked as UNUSED instead? (maybe not) | |
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2} | |
return seems_special | |
# used for GPT-2 BPE and WordPiece vocabs | |
def get_vocab_base(self) -> tuple[list[str], list[int], str]: | |
tokens: list[str] = [] | |
toktypes: list[int] = [] | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(self.dir_model) | |
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) | |
assert max(tokenizer.vocab.values()) < vocab_size | |
tokpre = self.get_vocab_base_pre(tokenizer) | |
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} | |
added_vocab = tokenizer.get_added_vocab() | |
for i in range(vocab_size): | |
if i not in reverse_vocab: | |
tokens.append(f"[PAD{i}]") | |
toktypes.append(gguf.TokenType.UNUSED) | |
else: | |
token: str = reverse_vocab[i] | |
if token in added_vocab: | |
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): | |
toktypes.append(gguf.TokenType.CONTROL) | |
else: | |
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces | |
toktypes.append(gguf.TokenType.USER_DEFINED) | |
else: | |
toktypes.append(gguf.TokenType.NORMAL) | |
tokens.append(token) | |
return tokens, toktypes, tokpre | |
# NOTE: this function is generated by convert_hf_to_gguf_update.py | |
# do not modify it manually! | |
# ref: https://github.com/ggerganov/llama.cpp/pull/6920 | |
# Marker: Start get_vocab_base_pre | |
def get_vocab_base_pre(self, tokenizer) -> str: | |
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that | |
# is specific for the BPE pre-tokenizer used by the model | |
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can | |
# use in llama.cpp to implement the same pre-tokenizer | |
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' | |
chktok = tokenizer.encode(chktxt) | |
chkhsh = sha256(str(chktok).encode()).hexdigest() | |
logger.debug(f"chktok: {chktok}") | |
logger.debug(f"chkhsh: {chkhsh}") | |
res = None | |
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script | |
# or pull the latest version of the model from Huggingface | |
# don't edit the hashes manually! | |
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": | |
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B | |
res = "llama-bpe" | |
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": | |
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base | |
res = "deepseek-llm" | |
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": | |
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base | |
res = "deepseek-coder" | |
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": | |
# ref: https://huggingface.co/tiiuae/falcon-7b | |
res = "falcon" | |
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": | |
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5 | |
res = "bert-bge" | |
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7": | |
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5 | |
res = "bert-bge-large" | |
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": | |
# ref: https://huggingface.co/mosaicml/mpt-7b | |
res = "mpt" | |
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": | |
# ref: https://huggingface.co/bigcode/starcoder2-3b | |
res = "starcoder" | |
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": | |
# ref: https://huggingface.co/openai-community/gpt2 | |
res = "gpt-2" | |
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": | |
# ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b | |
res = "stablelm2" | |
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": | |
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base | |
res = "refact" | |
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": | |
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01 | |
res = "command-r" | |
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": | |
# ref: https://huggingface.co/Qwen/Qwen1.5-7B | |
res = "qwen2" | |
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": | |
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf | |
res = "olmo" | |
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": | |
# ref: https://huggingface.co/databricks/dbrx-base | |
res = "dbrx" | |
if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448": | |
# ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en | |
res = "jina-v1-en" | |
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": | |
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en | |
res = "jina-v2-en" | |
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": | |
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es | |
res = "jina-v2-es" | |
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": | |
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de | |
res = "jina-v2-de" | |
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d": | |
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct | |
res = "smaug-bpe" | |
if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360": | |
# ref: https://huggingface.co/LumiOpen/Poro-34B-chat | |
res = "poro-chat" | |
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a": | |
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code | |
res = "jina-v2-code" | |
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": | |
# ref: https://huggingface.co/THUDM/glm-4-9b-chat | |
res = "chatglm-bpe" | |
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": | |
# ref: https://huggingface.co/LumiOpen/Viking-7B | |
res = "viking" | |
if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901": | |
# ref: https://huggingface.co/core42/jais-13b | |
res = "jais" | |
if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f": | |
# ref: https://huggingface.co/WisdomShell/CodeShell-7B | |
res = "codeshell" | |
if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e": | |
# ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407 | |
res = "tekken" | |
if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249": | |
# ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M | |
res = "smollm" | |
if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7": | |
# ref: https://huggingface.co/bigscience/bloom | |
res = "bloom" | |
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": | |
# ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small | |
res = "gpt3-finnish" | |
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": | |
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | |
res = "exaone" | |
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085": | |
# ref: https://huggingface.co/microsoft/phi-2 | |
res = "phi-2" | |
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450": | |
# ref: https://huggingface.co/facebook/chameleon-7b | |
res = "chameleon" | |
if res is None: | |
logger.warning("\n") | |
logger.warning("**************************************************************************************") | |
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") | |
logger.warning("** There are 2 possible reasons for this:") | |
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") | |
logger.warning("** - the pre-tokenization config has changed upstream") | |
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") | |
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") | |
logger.warning("**") | |
logger.warning(f"** chkhsh: {chkhsh}") | |
logger.warning("**************************************************************************************") | |
logger.warning("\n") | |
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") | |
logger.debug(f"tokenizer.ggml.pre: {repr(res)}") | |
logger.debug(f"chkhsh: {chkhsh}") | |
return res | |
# Marker: End get_vocab_base_pre | |
def _set_vocab_gpt2(self) -> None: | |
tokens, toktypes, tokpre = self.get_vocab_base() | |
self.gguf_writer.add_tokenizer_model("gpt2") | |
self.gguf_writer.add_tokenizer_pre(tokpre) | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def _set_vocab_qwen(self): | |
dir_model = self.dir_model | |
hparams = self.hparams | |
tokens: list[str] = [] | |
toktypes: list[int] = [] | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | |
vocab_size = hparams["vocab_size"] | |
assert max(tokenizer.get_vocab().values()) < vocab_size | |
tokpre = self.get_vocab_base_pre(tokenizer) | |
merges = [] | |
vocab = {} | |
mergeable_ranks = tokenizer.mergeable_ranks | |
for token, rank in mergeable_ranks.items(): | |
vocab[QwenModel.token_bytes_to_string(token)] = rank | |
if len(token) == 1: | |
continue | |
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) | |
assert len(merged) == 2 | |
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) | |
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined | |
added_vocab = tokenizer.special_tokens | |
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} | |
for i in range(vocab_size): | |
if i not in reverse_vocab: | |
tokens.append(f"[PAD{i}]") | |
toktypes.append(gguf.TokenType.UNUSED) | |
elif reverse_vocab[i] in added_vocab: | |
tokens.append(reverse_vocab[i]) | |
toktypes.append(gguf.TokenType.CONTROL) | |
else: | |
tokens.append(reverse_vocab[i]) | |
toktypes.append(gguf.TokenType.NORMAL) | |
self.gguf_writer.add_tokenizer_model("gpt2") | |
self.gguf_writer.add_tokenizer_pre(tokpre) | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) | |
special_vocab.merges = merges | |
# only add special tokens when they were not already loaded from config.json | |
if len(special_vocab.special_token_ids) == 0: | |
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) | |
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) | |
# this one is usually not in config.json anyway | |
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def _set_vocab_sentencepiece(self, add_to_gguf=True): | |
tokens, scores, toktypes = self._create_vocab_sentencepiece() | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def _create_vocab_sentencepiece(self): | |
from sentencepiece import SentencePieceProcessor | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
if not tokenizer_path.is_file(): | |
raise FileNotFoundError(f"File not found: {tokenizer_path}") | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
added_tokens_file = self.dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
added_tokens_json = json.load(f) | |
for key in added_tokens_json: | |
token_id = added_tokens_json[key] | |
if token_id >= vocab_size: | |
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | |
continue | |
tokens[token_id] = key.encode("utf-8") | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | |
if tokenizer_config_file.is_file(): | |
with open(tokenizer_config_file, "r", encoding="utf-8") as f: | |
tokenizer_config_json = json.load(f) | |
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) | |
for token_id, token_data in added_tokens_decoder.items(): | |
token_id = int(token_id) | |
token: str = token_data["content"] | |
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: | |
if tokens[token_id] != token.encode("utf-8"): | |
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}') | |
if token_data.get("special") or self.does_token_look_special(token): | |
toktypes[token_id] = SentencePieceTokenTypes.CONTROL | |
else: | |
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
scores[token_id] = -1000.0 | |
tokens[token_id] = token.encode("utf-8") | |
if vocab_size > len(tokens): | |
pad_count = vocab_size - len(tokens) | |
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") | |
for i in range(1, pad_count + 1): | |
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) | |
scores.append(-1000.0) | |
toktypes.append(SentencePieceTokenTypes.UNUSED) | |
return tokens, scores, toktypes | |
def _set_vocab_llama_hf(self): | |
vocab = gguf.LlamaHfVocab(self.dir_model) | |
tokens = [] | |
scores = [] | |
toktypes = [] | |
for text, score, toktype in vocab.all_tokens(): | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
assert len(tokens) == vocab.vocab_size | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int): | |
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf" | |
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") | |
vocab_reader = gguf.GGUFReader(tokenizer_path, "r") | |
default_pre = "mpt" if model_name == "gpt-neox" else "default" | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL) | |
assert field # tokenizer model | |
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8")) | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE) | |
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre) | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST) | |
assert field # token list | |
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) | |
if model_name == "llama-spm": | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES) | |
assert field # token scores | |
self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) | |
assert field # token types | |
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) | |
if model_name != "llama-spm": | |
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES) | |
assert field # token merges | |
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None: | |
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None: | |
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None: | |
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None: | |
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None: | |
self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0]) | |
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None: | |
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0]) | |
class GPTNeoXModel(Model): | |
model_arch = gguf.MODEL_ARCH.GPTNEOX | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_dimension_count( | |
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), | |
) | |
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) | |
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) | |
tensors: list[tuple[str, Tensor]] = [] | |
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name): | |
# Map bloom-style qkv_linear to gpt-style qkv_linear | |
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa | |
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa | |
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) | |
data_torch = torch.cat( | |
( | |
qkv_weights[:, 0, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 2, :, :].reshape((-1, n_embed)), | |
), | |
dim=0, | |
) | |
logger.info("re-format attention.linear_qkv.weight") | |
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name): | |
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) | |
data_torch = torch.cat( | |
( | |
qkv_bias[:, 0, :].reshape((n_embed,)), | |
qkv_bias[:, 1, :].reshape((n_embed,)), | |
qkv_bias[:, 2, :].reshape((n_embed,)), | |
), | |
dim=0, | |
) | |
logger.info("re-format attention.linear_qkv.bias") | |
tensors.append((self.map_tensor_name(name), data_torch)) | |
return tensors | |
class BloomModel(Model): | |
model_arch = gguf.MODEL_ARCH.BLOOM | |
def set_gguf_parameters(self): | |
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) | |
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) | |
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) | |
self.gguf_writer.add_embedding_length(n_embed) | |
self.gguf_writer.add_feed_forward_length(4 * n_embed) | |
self.gguf_writer.add_block_count(self.hparams["n_layer"]) | |
self.gguf_writer.add_head_count(n_head) | |
self.gguf_writer.add_head_count_kv(n_head) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) | |
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) | |
name = re.sub(r'transformer\.', '', name) | |
tensors: list[tuple[str, Tensor]] = [] | |
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): | |
# Map bloom-style qkv_linear to gpt-style qkv_linear | |
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa | |
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa | |
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) | |
data_torch = torch.cat( | |
( | |
qkv_weights[:, 0, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 2, :, :].reshape((-1, n_embed)), | |
), | |
dim=0, | |
) | |
logger.info("re-format attention.linear_qkv.weight") | |
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): | |
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) | |
data_torch = torch.cat( | |
( | |
qkv_bias[:, 0, :].reshape((n_embed,)), | |
qkv_bias[:, 1, :].reshape((n_embed,)), | |
qkv_bias[:, 2, :].reshape((n_embed,)), | |
), | |
dim=0, | |
) | |
logger.info("re-format attention.linear_qkv.bias") | |
tensors.append((self.map_tensor_name(name), data_torch)) | |
if name == "word_embeddings.weight": | |
assert self.tensor_names is not None | |
# TODO: tie them at runtime, don't duplicate in the model file | |
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) | |
return tensors | |
class MPTModel(Model): | |
model_arch = gguf.MODEL_ARCH.MPT | |
def set_vocab(self): | |
try: | |
self._set_vocab_gpt2() | |
except Exception: | |
# Fallback for SEA-LION model | |
self._set_vocab_sentencepiece() | |
self.gguf_writer.add_add_bos_token(False) | |
self.gguf_writer.add_pad_token_id(3) | |
self.gguf_writer.add_eos_token_id(1) | |
self.gguf_writer.add_unk_token_id(0) | |
def set_gguf_parameters(self): | |
block_count = self.hparams["n_layers"] | |
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) | |
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) | |
self.gguf_writer.add_head_count(self.hparams["n_heads"]) | |
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): | |
self.gguf_writer.add_head_count_kv(kv_n_heads) | |
self.gguf_writer.add_layer_norm_eps(1e-5) | |
if self.hparams["attn_config"]["clip_qkv"] is not None: | |
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) | |
if self.hparams["attn_config"]["alibi"]: | |
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) | |
else: | |
self.gguf_writer.add_max_alibi_bias(0.0) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
if "scales" in name: | |
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales")) | |
new_name = new_name.replace("scales", "act.scales") | |
else: | |
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias")) | |
return [(new_name, data_torch)] | |
class OrionModel(Model): | |
model_arch = gguf.MODEL_ARCH.ORION | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
head_count = self.hparams["num_attention_heads"] | |
head_count_kv = self.hparams.get("num_key_value_heads", head_count) | |
ctx_length = 0 | |
if "max_sequence_length" in self.hparams: | |
ctx_length = self.hparams["max_sequence_length"] | |
elif "max_position_embeddings" in self.hparams: | |
ctx_length = self.hparams["max_position_embeddings"] | |
elif "model_max_length" in self.hparams: | |
ctx_length = self.hparams["model_max_length"] | |
else: | |
raise ValueError("gguf: can not find ctx length parameter.") | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") | |
self.gguf_writer.add_context_length(ctx_length) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_head_count(head_count) | |
self.gguf_writer.add_head_count_kv(head_count_kv) | |
# note: config provides rms norm but it is actually layer norm | |
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571 | |
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) | |
class BaichuanModel(Model): | |
model_arch = gguf.MODEL_ARCH.BAICHUAN | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
head_count = self.hparams["num_attention_heads"] | |
head_count_kv = self.hparams.get("num_key_value_heads", head_count) | |
ctx_length = 0 | |
if "max_sequence_length" in self.hparams: | |
ctx_length = self.hparams["max_sequence_length"] | |
elif "max_position_embeddings" in self.hparams: | |
ctx_length = self.hparams["max_position_embeddings"] | |
elif "model_max_length" in self.hparams: | |
ctx_length = self.hparams["model_max_length"] | |
else: | |
raise ValueError("gguf: can not find ctx length parameter.") | |
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") | |
self.gguf_writer.add_context_length(ctx_length) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count(head_count) | |
self.gguf_writer.add_head_count_kv(head_count_kv) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: | |
if self.hparams["rope_scaling"].get("type") == "linear": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
head_count = self.hparams["num_attention_heads"] | |
head_count_kv = self.hparams.get("num_key_value_heads", head_count) | |
tensors: list[tuple[str, Tensor]] = [] | |
if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight": | |
logger.info(f"Unpacking and permuting layer {bid}") | |
tensors = [ | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), | |
self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)), | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), | |
self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)), | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), | |
self._reverse_hf_part(data_torch, 2)), | |
] | |
else: | |
tensors = [(self.map_tensor_name(name), data_torch)] | |
return tensors | |
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return ( | |
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape) | |
) | |
def _reverse_hf_permute_part( | |
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, | |
) -> Tensor: | |
r = weights.shape[0] // 3 | |
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) | |
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: | |
r = weights.shape[0] // 3 | |
return weights[r * n_part:r * n_part + r, ...] | |
class XverseModel(Model): | |
model_arch = gguf.MODEL_ARCH.XVERSE | |
def set_vocab(self): | |
assert (self.dir_model / "tokenizer.json").is_file() | |
dir_model = self.dir_model | |
hparams = self.hparams | |
tokens: list[bytes] = [] | |
toktypes: list[int] = [] | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(dir_model) | |
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) | |
# Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size, | |
# because vocab_size is the count of items, and indexes start at 0. | |
max_vocab_index = max(tokenizer.get_vocab().values()) | |
if max_vocab_index >= vocab_size: | |
raise ValueError("Vocabulary size exceeds expected maximum size.") | |
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} | |
added_vocab = tokenizer.get_added_vocab() | |
for token_id in range(vocab_size): | |
token_text = reverse_vocab[token_id].encode('utf-8') | |
# replace "\x00" to string with length > 0 | |
if token_text == b"\x00": | |
toktype = gguf.TokenType.BYTE # special | |
token_text = f"<{token_text}>".encode('utf-8') | |
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): | |
toktype = gguf.TokenType.BYTE # special | |
elif reverse_vocab[token_id] in added_vocab: | |
if tokenizer.added_tokens_decoder[token_id].special: | |
toktype = gguf.TokenType.CONTROL | |
else: | |
toktype = gguf.TokenType.USER_DEFINED | |
else: | |
toktype = gguf.TokenType.NORMAL | |
tokens.append(token_text) | |
toktypes.append(toktype) | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
head_count = self.hparams["num_attention_heads"] | |
head_count_kv = self.hparams.get("num_key_value_heads", head_count) | |
ctx_length = 0 | |
if "max_sequence_length" in self.hparams: | |
ctx_length = self.hparams["max_sequence_length"] | |
elif "max_position_embeddings" in self.hparams: | |
ctx_length = self.hparams["max_position_embeddings"] | |
elif "model_max_length" in self.hparams: | |
ctx_length = self.hparams["model_max_length"] | |
else: | |
raise ValueError("gguf: can not find ctx length parameter.") | |
self.gguf_writer.add_tensor_data_layout("Meta AI original pth") | |
self.gguf_writer.add_context_length(ctx_length) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count(head_count) | |
self.gguf_writer.add_head_count_kv(head_count_kv) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: | |
if self.hparams["rope_scaling"].get("type") == "linear": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
head_count = self.hparams["num_attention_heads"] | |
head_count_kv = self.hparams.get("num_key_value_heads", head_count) | |
# HF models permute some of the tensors, so we need to undo that | |
if name.endswith("q_proj.weight"): | |
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count) | |
if name.endswith("k_proj.weight"): | |
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv) | |
return [(self.map_tensor_name(name), data_torch)] | |
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return ( | |
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape) | |
) | |
class FalconModel(Model): | |
model_arch = gguf.MODEL_ARCH.FALCON | |
def set_gguf_parameters(self): | |
block_count = self.hparams.get("num_hidden_layers") | |
if block_count is None: | |
block_count = self.hparams["n_layer"] # old name | |
n_head = self.hparams.get("num_attention_heads") | |
if n_head is None: | |
n_head = self.hparams["n_head"] # old name | |
n_head_kv = self.hparams.get("num_kv_heads") | |
if n_head_kv is None: | |
n_head_kv = self.hparams.get("n_head_kv", 1) # old name | |
self.gguf_writer.add_context_length(2048) # not in config.json | |
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(n_head) | |
self.gguf_writer.add_head_count_kv(n_head_kv) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# QKV tensor transform | |
# The original query_key_value tensor contains n_head_kv "kv groups", | |
# each consisting of n_head/n_head_kv query weights followed by one key | |
# and one value weight (shared by all query heads in the kv group). | |
# This layout makes it a big pain to work with in GGML. | |
# So we rearrange them here,, so that we have n_head query weights | |
# followed by n_head_kv key weights followed by n_head_kv value weights, | |
# in contiguous fashion. | |
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py | |
if "query_key_value" in name: | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1 | |
head_dim = self.hparams["hidden_size"] // n_head | |
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) | |
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) | |
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) | |
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) | |
data_torch = torch.cat((q, k, v)).reshape_as(data_torch) | |
return [(self.map_tensor_name(name), data_torch)] | |
class StarCoderModel(Model): | |
model_arch = gguf.MODEL_ARCH.STARCODER | |
def set_gguf_parameters(self): | |
block_count = self.hparams["n_layer"] | |
self.gguf_writer.add_context_length(self.hparams["n_positions"]) | |
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) | |
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(self.hparams["n_head"]) | |
self.gguf_writer.add_head_count_kv(1) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
class RefactModel(Model): | |
model_arch = gguf.MODEL_ARCH.REFACT | |
def set_vocab(self): | |
super().set_vocab() | |
# TODO: how to determine special FIM tokens automatically? | |
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, | |
special_token_types = ['prefix', 'suffix', 'middle', 'eot']) | |
special_vocab._set_special_token("prefix", 1) | |
special_vocab._set_special_token("suffix", 3) | |
special_vocab._set_special_token("middle", 2) | |
special_vocab.chat_template = None # do not add it twice | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
hidden_dim = self.hparams["n_embd"] | |
inner_dim = 4 * hidden_dim | |
hidden_dim = int(2 * inner_dim / 3) | |
multiple_of = 256 | |
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
block_count = self.hparams["n_layer"] | |
# refact uses Alibi. So this is from config.json which might be used by training. | |
self.gguf_writer.add_context_length(self.hparams["n_positions"]) | |
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) | |
self.gguf_writer.add_feed_forward_length(ff_dim) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(self.hparams["n_head"]) | |
self.gguf_writer.add_head_count_kv(1) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
hidden_dim = self.hparams["n_embd"] | |
inner_dim = 4 * hidden_dim | |
hidden_dim = int(2 * inner_dim / 3) | |
multiple_of = 256 | |
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
n_head = self.hparams["n_head"] | |
n_head_kv = 1 | |
head_dim = self.hparams["n_embd"] // n_head | |
tensors: list[tuple[str, Tensor]] = [] | |
if bid is not None: | |
if name == f"transformer.h.{bid}.attn.kv.weight": | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim])) | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:])) | |
elif name == f"transformer.h.{bid}.attn.q.weight": | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch)) | |
elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight": | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])) | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])) | |
if len(tensors) == 0: | |
tensors.append((self.map_tensor_name(name), data_torch)) | |
return tensors | |
class StableLMModel(Model): | |
model_arch = gguf.MODEL_ARCH.STABLELM | |
def set_vocab(self): | |
if (self.dir_model / "tokenizer.json").is_file(): | |
self._set_vocab_gpt2() | |
else: | |
# StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab | |
self._set_vocab_qwen() | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
block_count = hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) | |
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) | |
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) | |
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) | |
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) | |
self.gguf_writer.add_file_type(self.ftype) | |
_q_norms: list[dict[str, Tensor]] | None = None | |
_k_norms: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams["num_key_value_heads"] | |
if name.find("q_layernorm.norms") != -1: | |
assert bid is not None | |
if self._q_norms is None: | |
self._q_norms = [{} for _ in range(self.block_count)] | |
self._q_norms[bid][name] = data_torch | |
if len(self._q_norms[bid]) >= n_head: | |
return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm") | |
else: | |
return [] | |
if name.find("k_layernorm.norms") != -1: | |
assert bid is not None | |
if self._k_norms is None: | |
self._k_norms = [{} for _ in range(self.block_count)] | |
self._k_norms[bid][name] = data_torch | |
if len(self._k_norms[bid]) >= n_kv_head: | |
return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm") | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"): | |
datas: list[Tensor] = [] | |
# extract the norms in order | |
for xid in range(n_head): | |
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" | |
datas.append(norms[ename]) | |
del norms[ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
return [(new_name, data_torch)] | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._q_norms is not None or self._k_norms is not None: | |
# flatten two `list[dict[str, Tensor]]` into a single `list[str]` | |
norms = ( | |
[k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else [] | |
) + ( | |
[k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else [] | |
) | |
if len(norms) > 0: | |
raise ValueError(f"Unprocessed norms: {norms}") | |
class LlamaModel(Model): | |
model_arch = gguf.MODEL_ARCH.LLAMA | |
def set_vocab(self): | |
try: | |
self._set_vocab_sentencepiece() | |
except FileNotFoundError: | |
try: | |
self._set_vocab_llama_hf() | |
except (FileNotFoundError, TypeError): | |
# Llama 3 | |
self._set_vocab_gpt2() | |
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256) | |
if self.hparams.get("vocab_size", 32000) == 32016: | |
special_vocab = gguf.SpecialVocab( | |
self.dir_model, load_merges=False, | |
special_token_types = ['prefix', 'suffix', 'middle', 'eot'] | |
) | |
special_vocab._set_special_token("prefix", 32007) | |
special_vocab._set_special_token("suffix", 32008) | |
special_vocab._set_special_token("middle", 32009) | |
special_vocab._set_special_token("eot", 32010) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | |
if tokenizer_config_file.is_file(): | |
with open(tokenizer_config_file, "r", encoding="utf-8") as f: | |
tokenizer_config_json = json.load(f) | |
if "add_prefix_space" in tokenizer_config_json: | |
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"]) | |
# Apply to granite small models only | |
if self.hparams.get("vocab_size", 32000) == 49152: | |
self.gguf_writer.add_add_bos_token(False) | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
hparams = self.hparams | |
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | |
if "head_dim" in hparams: | |
rope_dim = hparams["head_dim"] | |
else: | |
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] | |
self.gguf_writer.add_rope_dimension_count(rope_dim) | |
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: | |
if self.hparams["rope_scaling"].get("type") == "linear": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) | |
def permute(weights: Tensor, n_head: int, n_head_kv: int | None): | |
if n_head_kv is not None and n_head != n_head_kv: | |
n_head = n_head_kv | |
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape)) | |
_experts: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams.get("num_key_value_heads") | |
if name.endswith(("q_proj.weight", "q_proj.bias")): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_head) | |
if name.endswith(("k_proj.weight", "k_proj.bias")): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) | |
# process the experts separately | |
if name.find("block_sparse_moe.experts") != -1: | |
n_experts = self.hparams["num_local_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for wid in ["w1", "w2", "w3"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: | |
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): | |
if rope_scaling.get("rope_type", '').lower() == "llama3": | |
base = self.hparams.get("rope_theta", 10000.0) | |
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) | |
factor = rope_scaling.get("factor", 8.0) | |
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) | |
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) | |
old_context_len = self.hparams.get("original_max_position_embeddings", 8192) | |
low_freq_wavelen = old_context_len / low_freq_factor | |
high_freq_wavelen = old_context_len / high_freq_factor | |
assert low_freq_wavelen != high_freq_wavelen | |
rope_factors = [] | |
for freq in freqs: | |
wavelen = 2 * math.pi / freq | |
if wavelen < high_freq_wavelen: | |
rope_factors.append(1) | |
elif wavelen > low_freq_wavelen: | |
rope_factors.append(factor) | |
else: | |
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) | |
rope_factors.append(1 / ((1 - smooth) / factor + smooth)) | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._experts is not None: | |
# flatten `list[dict[str, Tensor]]` into `list[str]` | |
experts = [k for d in self._experts for k in d.keys()] | |
if len(experts) > 0: | |
raise ValueError(f"Unprocessed experts: {experts}") | |
class BitnetModel(Model): | |
model_arch = gguf.MODEL_ARCH.BITNET | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(1.0) | |
def weight_quant(self, weight: Tensor) -> Tensor: | |
dtype = weight.dtype | |
weight = weight.float() | |
scale = weight.abs().mean().clamp(min=1e-5) | |
iscale = 1 / scale | |
# TODO: multiply by the scale directly instead of inverting it twice | |
# (this is also unnecessarily doubly inverted upstream) | |
# ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10 | |
result = (weight * iscale).round().clamp(-1, 1) / iscale | |
return result.type(dtype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
new_name = self.map_tensor_name(name) | |
if any(self.match_model_tensor_name(new_name, key, bid) for key in [ | |
gguf.MODEL_TENSOR.ATTN_Q, | |
gguf.MODEL_TENSOR.ATTN_K, | |
gguf.MODEL_TENSOR.ATTN_V, | |
gguf.MODEL_TENSOR.ATTN_OUT, | |
gguf.MODEL_TENSOR.FFN_UP, | |
gguf.MODEL_TENSOR.FFN_DOWN, | |
gguf.MODEL_TENSOR.FFN_GATE, | |
]): | |
# transform weight into 1/0/-1 (in fp32) | |
data_torch = self.weight_quant(data_torch) | |
yield (new_name, data_torch) | |
class GrokModel(Model): | |
model_arch = gguf.MODEL_ARCH.GROK | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
_experts: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# process the experts separately | |
if name.find(".moe.") != -1: | |
n_experts = self.hparams["num_local_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for wid in ["linear", "linear_1", "linear_v"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
class DbrxModel(Model): | |
model_arch = gguf.MODEL_ARCH.DBRX | |
def set_gguf_parameters(self): | |
ffn_config = self.hparams["ffn_config"] | |
attn_config = self.hparams["attn_config"] | |
self.gguf_writer.add_block_count(self.hparams["n_layers"]) | |
self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) | |
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) | |
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"]) | |
self.gguf_writer.add_head_count(self.hparams["n_heads"]) | |
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"]) | |
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) | |
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) | |
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) | |
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) | |
self.gguf_writer.add_layer_norm_eps(1e-5) | |
self.gguf_writer.add_file_type(self.ftype) | |
logger.info(f"gguf: file type = {self.ftype}") | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
n_expert = self.hparams["ffn_config"]["moe_num_experts"] | |
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] | |
n_embd = self.hparams["d_model"] | |
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose | |
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights | |
# But llama.cpp moe graph works differently | |
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions | |
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor | |
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} | |
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert} | |
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} | |
experts = False | |
for exp_tensor_name in exp_tensor_names.keys(): | |
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: | |
experts = True | |
data_torch = data_torch.view(n_expert, n_ff, n_embd) | |
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None: | |
data_torch = data_torch.permute(*permute_tensor) | |
break | |
# map tensor names | |
# In MoE models the ffn tensors are typically most of the model weights, | |
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight. | |
# Every other model has the weight names ending in .weight, | |
# let's assume that is the convention which is not the case for dbrx: | |
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15 | |
new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) | |
return [(new_name, data_torch)] | |
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: | |
del name, new_name, bid # unused | |
return n_dims > 1 | |
class MiniCPMModel(Model): | |
model_arch = gguf.MODEL_ARCH.MINICPM | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def set_vocab(self): | |
self._set_vocab_llama_hf() | |
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return ( | |
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape) | |
) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams.get("num_key_value_heads") | |
# HF models permute some of the tensors, so we need to undo that | |
if name.endswith(("q_proj.weight")): | |
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) | |
if name.endswith(("k_proj.weight")): | |
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) | |
return [(self.map_tensor_name(name), data_torch)] | |
class MiniCPM3Model(Model): | |
model_arch = gguf.MODEL_ARCH.MINICPM3 | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(self.block_count) | |
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | |
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | |
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: | |
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) | |
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) | |
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) | |
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) | |
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: | |
rope_scaling = self.find_hparam(['rope_scaling'], True) | |
if rope_scaling is not None: | |
rope_dims = self.hparams["qk_rope_head_dim"] | |
long_factors = rope_scaling.get('long_factor', None) | |
short_factors = rope_scaling.get('short_factor', None) | |
if long_factors is None or short_factors is None: | |
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') | |
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: | |
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return ( | |
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape) | |
) | |
class QwenModel(Model): | |
model_arch = gguf.MODEL_ARCH.QWEN | |
def token_bytes_to_string(b): | |
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode | |
byte_encoder = bytes_to_unicode() | |
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) | |
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: | |
parts = [bytes([b]) for b in token] | |
while True: | |
min_idx = None | |
min_rank = None | |
for i, pair in enumerate(zip(parts[:-1], parts[1:])): | |
rank = mergeable_ranks.get(pair[0] + pair[1]) | |
if rank is not None and (min_rank is None or rank < min_rank): | |
min_idx = i | |
min_rank = rank | |
if min_rank is None or (max_rank is not None and min_rank >= max_rank): | |
break | |
assert min_idx is not None | |
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] | |
return parts | |
def set_vocab(self): | |
self._set_vocab_qwen() | |
def set_gguf_parameters(self): | |
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) | |
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) | |
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
class Qwen2Model(Model): | |
model_arch = gguf.MODEL_ARCH.QWEN2 | |
def set_vocab(self): | |
try: | |
self._set_vocab_sentencepiece() | |
except FileNotFoundError: | |
self._set_vocab_gpt2() | |
class Qwen2MoeModel(Model): | |
model_arch = gguf.MODEL_ARCH.QWEN2MOE | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
if (n_experts := self.hparams.get("num_experts")) is not None: | |
self.gguf_writer.add_expert_count(n_experts) | |
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None: | |
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) | |
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}") | |
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None: | |
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size) | |
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}") | |
_experts: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# process the experts separately | |
if name.find("experts") != -1: | |
n_experts = self.hparams["num_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for w_name in ["down_proj", "gate_proj", "up_proj"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._experts is not None: | |
# flatten `list[dict[str, Tensor]]` into `list[str]` | |
experts = [k for d in self._experts for k in d.keys()] | |
if len(experts) > 0: | |
raise ValueError(f"Unprocessed experts: {experts}") | |
class GPT2Model(Model): | |
model_arch = gguf.MODEL_ARCH.GPT2 | |
def set_gguf_parameters(self): | |
self.gguf_writer.add_block_count(self.hparams["n_layer"]) | |
self.gguf_writer.add_context_length(self.hparams["n_ctx"]) | |
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) | |
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) | |
self.gguf_writer.add_head_count(self.hparams["n_head"]) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
tensors: list[tuple[str, Tensor]] = [] | |
# we don't need these | |
if name.endswith((".attn.bias", ".attn.masked_bias")): | |
return tensors | |
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): | |
data_torch = data_torch.transpose(1, 0) | |
new_name = self.map_tensor_name(name) | |
tensors.append((new_name, data_torch)) | |
# note: GPT2 output is tied to (same as) wte in original model | |
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) | |
return tensors | |
class Phi2Model(Model): | |
model_arch = gguf.MODEL_ARCH.PHI2 | |
def set_gguf_parameters(self): | |
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) | |
rot_pct = self.find_hparam(["partial_rotary_factor"]) | |
n_embd = self.find_hparam(["hidden_size", "n_embd"]) | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) | |
self.gguf_writer.add_embedding_length(n_embd) | |
self.gguf_writer.add_feed_forward_length(4 * n_embd) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(n_head) | |
self.gguf_writer.add_head_count_kv(n_head) | |
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) | |
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_add_bos_token(False) | |
class Phi3MiniModel(Model): | |
model_arch = gguf.MODEL_ARCH.PHI3 | |
def set_vocab(self): | |
from sentencepiece import SentencePieceProcessor | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
if not tokenizer_path.is_file(): | |
raise ValueError(f'Error: Missing {tokenizer_path}') | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
added_tokens_file = self.dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
added_tokens_json = json.load(f) | |
for key in added_tokens_json: | |
token_id = added_tokens_json[key] | |
if token_id >= vocab_size: | |
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | |
continue | |
tokens[token_id] = key.encode("utf-8") | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | |
if tokenizer_config_file.is_file(): | |
with open(tokenizer_config_file, "r", encoding="utf-8") as f: | |
tokenizer_config_json = json.load(f) | |
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) | |
for token_id, foken_data in added_tokens_decoder.items(): | |
token_id = int(token_id) | |
token = foken_data["content"].encode("utf-8") | |
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: | |
if tokens[token_id] != token: | |
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') | |
tokens[token_id] = token | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if foken_data.get("special"): | |
toktypes[token_id] = SentencePieceTokenTypes.CONTROL | |
tokenizer_file = self.dir_model / 'tokenizer.json' | |
if tokenizer_file.is_file(): | |
with open(tokenizer_file, "r", encoding="utf-8") as f: | |
tokenizer_json = json.load(f) | |
added_tokens = tokenizer_json.get("added_tokens", []) | |
for foken_data in added_tokens: | |
token_id = int(foken_data["id"]) | |
token = foken_data["content"].encode("utf-8") | |
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: | |
if tokens[token_id] != token: | |
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') | |
tokens[token_id] = token | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if foken_data.get("special"): | |
toktypes[token_id] = SentencePieceTokenTypes.CONTROL | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) | |
n_embd = self.find_hparam(["hidden_size", "n_embd"]) | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"]) | |
rms_eps = self.find_hparam(["rms_norm_eps"]) | |
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) | |
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) | |
rope_dims = n_embd // n_head | |
self.gguf_writer.add_context_length(max_pos_embds) | |
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds) | |
self.gguf_writer.add_embedding_length(n_embd) | |
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"])) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(n_head) | |
self.gguf_writer.add_head_count_kv(n_head_kv) | |
self.gguf_writer.add_layer_norm_rms_eps(rms_eps) | |
self.gguf_writer.add_rope_dimension_count(rope_dims) | |
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"])) | |
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: | |
n_embd = self.find_hparam(["hidden_size", "n_embd"]) | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) | |
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) | |
rope_dims = n_embd // n_head | |
# write rope scaling for long context (128k) model | |
rope_scaling = self.find_hparam(['rope_scaling'], True) | |
if rope_scaling is None: | |
return | |
scale = max_pos_embds / orig_max_pos_embds | |
rope_scaling_type = rope_scaling.get('type', '').lower() | |
if len(rope_scaling_type) == 0: | |
raise KeyError('Missing the required key rope_scaling.type') | |
if rope_scaling_type == 'su' or rope_scaling_type == 'longrope': | |
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0 | |
elif rope_scaling_type == 'yarn': | |
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0 | |
else: | |
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet') | |
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor) | |
long_factors = rope_scaling.get('long_factor', None) | |
short_factors = rope_scaling.get('short_factor', None) | |
if long_factors is None or short_factors is None: | |
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') | |
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: | |
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) | |
class PlamoModel(Model): | |
model_arch = gguf.MODEL_ARCH.PLAMO | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
block_count = hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(4096) # not in config.json | |
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong | |
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def shuffle_attn_q_weight(self, data_torch): | |
assert data_torch.size() == (5120, 5120) | |
data_torch = data_torch.reshape(8, 5, 128, 5120) | |
data_torch = torch.permute(data_torch, (1, 0, 2, 3)) | |
data_torch = torch.reshape(data_torch, (5120, 5120)) | |
return data_torch | |
def shuffle_attn_output_weight(self, data_torch): | |
assert data_torch.size() == (5120, 5120) | |
data_torch = data_torch.reshape(5120, 8, 5, 128) | |
data_torch = torch.permute(data_torch, (0, 2, 1, 3)) | |
data_torch = torch.reshape(data_torch, (5120, 5120)) | |
return data_torch | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
new_name = self.map_tensor_name(name) | |
# shuffle for broadcasting of gqa in ggml_mul_mat | |
if new_name.endswith("attn_q.weight"): | |
data_torch = self.shuffle_attn_q_weight(data_torch) | |
elif new_name.endswith("attn_output.weight"): | |
data_torch = self.shuffle_attn_output_weight(data_torch) | |
return [(new_name, data_torch)] | |
class CodeShellModel(Model): | |
model_arch = gguf.MODEL_ARCH.CODESHELL | |
def set_gguf_parameters(self): | |
block_count = self.hparams["n_layer"] | |
self.gguf_writer.add_context_length(self.hparams["n_positions"]) | |
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) | |
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_head_count(self.hparams["n_head"]) | |
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_rope_freq_base(10000.0) | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(1.0) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
new_name = self.map_tensor_name(name) | |
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)] | |
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): | |
assert self.tensor_names is not None | |
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): | |
# copy tok_embd.weight to output.weight | |
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) | |
return tensors | |
class InternLM2Model(Model): | |
model_arch = gguf.MODEL_ARCH.INTERNLM2 | |
def set_vocab(self): | |
# (TODO): Is there a better way? | |
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character | |
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly | |
# recognized as an empty string in C++. | |
from sentencepiece import SentencePieceProcessor | |
from sentencepiece import sentencepiece_model_pb2 as model | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
tokens: list[bytes] = [] | |
scores: list[float] = [] | |
toktypes: list[int] = [] | |
if not tokenizer_path.is_file(): | |
logger.error(f'Error: Missing {tokenizer_path}') | |
sys.exit(1) | |
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] | |
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) | |
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
for token_id in range(vocab_size): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
if text == b"\x00": | |
# (TODO): fixme | |
# Hack here and replace the \x00 characters. | |
logger.warning(f"InternLM2 convert token '{text}' to '🐉'!") | |
text = "🐉".encode("utf-8") | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
# take care of ununsed raw token | |
if piece.startswith('[UNUSED'): | |
toktype = SentencePieceTokenTypes.UNUSED | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
added_tokens_file = self.dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
added_tokens_json = json.load(f) | |
for key in added_tokens_json: | |
tokens.append(key.encode("utf-8")) | |
scores.append(-1000.0) | |
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) | |
chat_eos_token = '<|im_end|>' | |
chat_eos_token_id = None | |
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | |
if tokenizer_config_file.is_file(): | |
with open(tokenizer_config_file, "r", encoding="utf-8") as f: | |
tokenizer_config_json = json.load(f) | |
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) | |
for token_id, foken_data in added_tokens_decoder.items(): | |
token_id = int(token_id) | |
token = foken_data["content"] | |
if token == chat_eos_token: | |
chat_eos_token_id = token_id | |
token = token.encode("utf-8") | |
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: | |
if tokens[token_id] != token: | |
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') | |
tokens[token_id] = token | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if foken_data.get("special"): | |
toktypes[token_id] = SentencePieceTokenTypes.CONTROL | |
tokenizer_file = self.dir_model / 'tokenizer.json' | |
if tokenizer_file.is_file(): | |
with open(tokenizer_file, "r", encoding="utf-8") as f: | |
tokenizer_json = json.load(f) | |
added_tokens = tokenizer_json.get("added_tokens", []) | |
for foken_data in added_tokens: | |
token_id = int(foken_data["id"]) | |
token = foken_data["content"] | |
if token == chat_eos_token: | |
chat_eos_token_id = token_id | |
token = token.encode("utf-8") | |
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: | |
if tokens[token_id] != token: | |
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}') | |
tokens[token_id] = token | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if foken_data.get("special"): | |
toktypes[token_id] = SentencePieceTokenTypes.CONTROL | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
self.gguf_writer.add_add_space_prefix(add_prefix) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
old_eos = special_vocab.special_token_ids["eos"] | |
if chat_eos_token_id is not None: | |
# For the chat model, we replace the eos with '<|im_end|>'. | |
# TODO: this is a hack, should be fixed | |
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048 | |
special_vocab.special_token_ids["eos"] = chat_eos_token_id | |
logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}" | |
" in chat mode so that the conversation can end normally.") | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) | |
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) | |
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | |
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | |
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) | |
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: | |
if self.hparams["rope_scaling"].get("type") == "linear": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
num_heads = self.hparams["num_attention_heads"] | |
num_kv_heads = self.hparams["num_key_value_heads"] | |
n_embd = self.hparams["hidden_size"] | |
q_per_kv = num_heads // num_kv_heads | |
head_dim = n_embd // num_heads | |
num_groups = num_heads // q_per_kv | |
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name: | |
qkv = data_torch | |
qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd)) | |
q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1] | |
# The model weights of q and k equire additional reshape. | |
q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads) | |
k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads) | |
v = v.reshape((-1, v.shape[-1])) | |
return [ | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q), | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k), | |
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v), | |
] | |
else: | |
return [(self.map_tensor_name(name), data_torch)] | |
class BertModel(Model): | |
model_arch = gguf.MODEL_ARCH.BERT | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.vocab_size = None | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_causal_attention(False) | |
# get pooling path | |
pooling_path = None | |
module_path = self.dir_model / "modules.json" | |
if module_path.is_file(): | |
with open(module_path, encoding="utf-8") as f: | |
modules = json.load(f) | |
for mod in modules: | |
if mod["type"] == "sentence_transformers.models.Pooling": | |
pooling_path = mod["path"] | |
break | |
# get pooling type | |
if pooling_path is not None: | |
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: | |
pooling = json.load(f) | |
if pooling["pooling_mode_mean_tokens"]: | |
pooling_type = gguf.PoolingType.MEAN | |
elif pooling["pooling_mode_cls_token"]: | |
pooling_type = gguf.PoolingType.CLS | |
else: | |
raise NotImplementedError("Only MEAN and CLS pooling types supported") | |
self.gguf_writer.add_pooling_type(pooling_type) | |
def set_vocab(self): | |
tokens, toktypes, tokpre = self.get_vocab_base() | |
self.vocab_size = len(tokens) | |
# we need this to validate the size of the token_type embeddings | |
# though currently we are passing all zeros to the token_type embeddings | |
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B" | |
# convert to phantom space vocab | |
def phantom(tok): | |
if tok.startswith("[") and tok.endswith("]"): | |
return tok | |
if tok.startswith("##"): | |
return tok[2:] | |
return "\u2581" + tok | |
tokens = list(map(phantom, tokens)) | |
# add vocab to gguf | |
self.gguf_writer.add_tokenizer_model("bert") | |
self.gguf_writer.add_tokenizer_pre(tokpre) | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
# handle special tokens | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# we are only using BERT for embeddings so we don't need the pooling layer | |
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): | |
return [] # we don't need these | |
return [(self.map_tensor_name(name), data_torch)] | |
class NomicBertModel(BertModel): | |
model_arch = gguf.MODEL_ARCH.NOMIC_BERT | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# the HF config claims n_ctx=8192, but it uses RoPE scaling | |
self.hparams["n_ctx"] = 2048 | |
# SwigLU activation | |
assert self.hparams["activation_function"] == "swiglu" | |
# this doesn't do anything in the HF version | |
assert self.hparams["causal"] is False | |
# no bias tensors | |
assert self.hparams["qkv_proj_bias"] is False | |
assert self.hparams["mlp_fc1_bias"] is False | |
assert self.hparams["mlp_fc2_bias"] is False | |
# norm at end of layer | |
assert self.hparams["prenorm"] is False | |
# standard RoPE | |
assert self.hparams["rotary_emb_fraction"] == 1.0 | |
assert self.hparams["rotary_emb_interleaved"] is False | |
assert self.hparams["rotary_emb_scale_base"] is None | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) | |
class XLMRobertaModel(BertModel): | |
model_arch = gguf.MODEL_ARCH.BERT | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# we need the pad_token_id to know how to chop down position_embd matrix | |
if (pad_token_id := self.hparams.get("pad_token_id")) is not None: | |
self._position_offset = 1 + pad_token_id | |
if "max_position_embeddings" in self.hparams: | |
self.hparams["max_position_embeddings"] -= self._position_offset | |
else: | |
self._position_offset = None | |
def set_vocab(self): | |
# to avoid TypeError: Descriptors cannot be created directly | |
# exception when importing sentencepiece_model_pb2 | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
from sentencepiece import SentencePieceProcessor | |
from sentencepiece import sentencepiece_model_pb2 as model | |
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model' | |
if not tokenizer_path.is_file(): | |
raise FileNotFoundError(f"File not found: {tokenizer_path}") | |
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] | |
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) | |
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM | |
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix | |
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces | |
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
if vocab_size > len(tokens): | |
pad_count = vocab_size - len(tokens) | |
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") | |
for i in range(1, pad_count + 1): | |
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) | |
scores.append(-1000.0) | |
toktypes.append(SentencePieceTokenTypes.UNUSED) | |
# realign tokens (see HF tokenizer code) | |
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1] | |
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] | |
toktypes = [ | |
SentencePieceTokenTypes.CONTROL, | |
SentencePieceTokenTypes.CONTROL, | |
SentencePieceTokenTypes.CONTROL, | |
SentencePieceTokenTypes.UNKNOWN, | |
] + toktypes[3:-1] | |
self.gguf_writer.add_tokenizer_model("t5") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
self.gguf_writer.add_add_space_prefix(add_prefix) | |
self.gguf_writer.add_token_type_count(1) | |
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) | |
if precompiled_charsmap: | |
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
self.gguf_writer.add_add_bos_token(True) | |
self.gguf_writer.add_add_eos_token(True) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# if name starts with "roberta.", remove the prefix | |
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main | |
if name.startswith("roberta."): | |
name = name[8:] | |
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor | |
if name == "embeddings.position_embeddings.weight": | |
if self._position_offset is not None: | |
data_torch = data_torch[self._position_offset:,:] | |
return super().modify_tensors(data_torch, name, bid) | |
class GemmaModel(Model): | |
model_arch = gguf.MODEL_ARCH.GEMMA | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
# TODO: these special tokens should be exported only for the CodeGemma family | |
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, | |
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) | |
special_vocab._set_special_token("prefix", 67) | |
special_vocab._set_special_token("suffix", 69) | |
special_vocab._set_special_token("middle", 68) | |
special_vocab._set_special_token("fsep", 70) | |
special_vocab._set_special_token("eot", 107) | |
special_vocab.chat_template = None # do not add it twice | |
special_vocab.add_to_gguf(self.gguf_writer) | |
self.gguf_writer.add_add_space_prefix(False) | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
block_count = hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_key_length(hparams["head_dim"]) | |
self.gguf_writer.add_value_length(hparams["head_dim"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model | |
# To prevent errors, skip loading lm_head.weight. | |
if name == "lm_head.weight": | |
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") | |
return [] | |
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 | |
if name.endswith("norm.weight"): | |
data_torch = data_torch + 1 | |
return [(self.map_tensor_name(name), data_torch)] | |
class Gemma2Model(Model): | |
model_arch = gguf.MODEL_ARCH.GEMMA2 | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
self.gguf_writer.add_add_space_prefix(False) | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
block_count = hparams["num_hidden_layers"] | |
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) | |
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) | |
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | |
self.gguf_writer.add_key_length(hparams["head_dim"]) | |
self.gguf_writer.add_value_length(hparams["head_dim"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_attn_logit_softcapping( | |
self.hparams["attn_logit_softcapping"] | |
) | |
self.gguf_writer.add_final_logit_softcapping( | |
self.hparams["final_logit_softcapping"] | |
) | |
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model | |
# To prevent errors, skip loading lm_head.weight. | |
if name == "lm_head.weight": | |
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") | |
return [] | |
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 | |
if name.endswith("norm.weight"): | |
data_torch = data_torch + 1 | |
return [(self.map_tensor_name(name), data_torch)] | |
class StarCoder2Model(Model): | |
model_arch = gguf.MODEL_ARCH.STARCODER2 | |
class Rwkv6Model(Model): | |
model_arch = gguf.MODEL_ARCH.RWKV6 | |
def set_vocab(self): | |
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file() | |
vocab_size = self.hparams.get("vocab_size", 65536) | |
tokens: list[bytes] = ['<s>'.encode("utf-8")] | |
toktypes: list[int] = [gguf.TokenType.CONTROL] | |
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f: | |
lines = f.readlines() | |
for line in lines: | |
parts = line.split(' ') | |
assert len(parts) >= 3 | |
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1]) | |
token = token.encode("utf-8") if isinstance(token, str) else token | |
assert isinstance(token, bytes) | |
assert len(token) == token_len | |
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff" | |
tokens.append(token_text.encode("utf-8")) | |
toktypes.append(gguf.TokenType.NORMAL) | |
remainder = vocab_size - len(tokens) | |
assert remainder >= 0 | |
for i in range(len(tokens), vocab_size): | |
tokens.append(f"[PAD{i}]".encode("utf-8")) | |
toktypes.append(gguf.TokenType.UNUSED) | |
self.gguf_writer.add_tokenizer_model("rwkv") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) | |
special_vocab.chat_template = "rwkv-world" | |
# hack: Add '\n\n' as the EOT token to make it chat normally | |
special_vocab._set_special_token("eot", 261) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
block_count = self.hparams["num_hidden_layers"] | |
head_size = self.hparams["head_size"] | |
hidden_size = self.hparams["hidden_size"] | |
layer_norm_eps = self.hparams["layer_norm_epsilon"] | |
rescale_every_n_layers = self.hparams["rescale_every"] | |
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32) | |
time_mix_extra_dim = 64 if hidden_size == 4096 else 32 | |
time_decay_extra_dim = 128 if hidden_size == 4096 else 64 | |
# RWKV isn't context limited | |
self.gguf_writer.add_context_length(1048576) | |
self.gguf_writer.add_embedding_length(hidden_size) | |
self.gguf_writer.add_block_count(block_count) | |
self.gguf_writer.add_layer_norm_eps(layer_norm_eps) | |
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers) | |
self.gguf_writer.add_wkv_head_size(head_size) | |
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim) | |
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim) | |
self.gguf_writer.add_feed_forward_length(intermediate_size) | |
self.gguf_writer.add_file_type(self.ftype) | |
# required by llama.cpp, unused | |
self.gguf_writer.add_head_count(0) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
new_name = self.map_tensor_name(name) | |
if not (new_name.endswith(".weight") or new_name.endswith(".bias")): | |
new_name += ".weight" | |
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"): | |
data_torch = data_torch.transpose(0, 1) | |
if new_name.endswith("time_mix_w2.weight"): | |
data_torch = data_torch.permute(0, 2, 1) | |
rescale_every_n_layers = self.hparams["rescale_every"] | |
if rescale_every_n_layers > 0: | |
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"): | |
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers)) | |
yield (new_name, data_torch) | |
class MambaModel(Model): | |
model_arch = gguf.MODEL_ARCH.MAMBA | |
def set_vocab(self): | |
vocab_size = self.hparams["vocab_size"] | |
# Round vocab size to next multiple of 8 | |
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8) | |
# pad using ceiling division | |
# ref: https://stackoverflow.com/a/17511341/22827863 | |
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab | |
self.hparams["vocab_size"] = vocab_size | |
if (self.dir_model / "tokenizer.json").is_file(): | |
self._set_vocab_gpt2() | |
elif (self.dir_model / "tokenizer.model").is_file(): | |
self._set_vocab_sentencepiece() | |
else: | |
# Use the GPT-NeoX tokenizer when no tokenizer files are present | |
self._set_vocab_builtin("gpt-neox", vocab_size) | |
def set_gguf_parameters(self): | |
d_model = self.find_hparam(["hidden_size", "d_model"]) | |
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 | |
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model | |
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16 | |
# ceiling division | |
# ref: https://stackoverflow.com/a/17511341/22827863 | |
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58 | |
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) | |
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 | |
use_dt_b_c_norm = False | |
# For falconmamba we do apply RMS norm on B / DT and C layers | |
if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",): | |
use_dt_b_c_norm = True | |
# Fail early for models which don't have a block expansion factor of 2 | |
assert d_inner == 2 * d_model | |
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default | |
self.gguf_writer.add_embedding_length(d_model) | |
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading | |
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading | |
self.gguf_writer.add_block_count(self.block_count) | |
self.gguf_writer.add_ssm_conv_kernel(d_conv) | |
self.gguf_writer.add_ssm_inner_size(d_inner) | |
self.gguf_writer.add_ssm_state_size(d_state) | |
self.gguf_writer.add_ssm_time_step_rank(dt_rank) | |
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps) | |
self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers | |
self.gguf_writer.add_file_type(self.ftype) | |
_tok_embd = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT) | |
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD) | |
new_name = self.map_tensor_name(name) | |
if name.endswith(".A_log"): | |
logger.debug("A_log --> A ==> " + new_name) | |
data_torch = -torch.exp(data_torch) | |
# assuming token_embd.weight is seen before output.weight | |
if self._tok_embd is not None and new_name == output_name: | |
if torch.equal(self._tok_embd, data_torch): | |
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") | |
return [] | |
elif new_name == tok_embd_name: | |
self._tok_embd = data_torch | |
return [(new_name, data_torch)] | |
class CommandR2Model(Model): | |
model_arch = gguf.MODEL_ARCH.COMMAND_R | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# max_position_embeddings = 8192 in config.json but model was actually | |
# trained on 128k context length | |
# aya-23 models don't have model_max_length specified | |
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"]) | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) | |
class OlmoModel(Model): | |
model_arch = gguf.MODEL_ARCH.OLMO | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_layer_norm_eps(1e-5) | |
clip_qkv = self.hparams.get("clip_qkv") | |
if clip_qkv is not None: | |
self.gguf_writer.add_clamp_kqv(clip_qkv) | |
# Same as super class, but permuting q_proj, k_proj | |
# Copied from: LlamaModel | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams.get("num_key_value_heads") | |
if name.endswith("q_proj.weight"): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_head) | |
if name.endswith("k_proj.weight"): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) | |
return [(self.map_tensor_name(name), data_torch)] | |
class OlmoeModel(Model): | |
model_arch = gguf.MODEL_ARCH.OLMOE | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_layer_norm_rms_eps(1e-5) | |
if (n_experts := self.hparams.get("num_experts")) is not None: | |
self.gguf_writer.add_expert_count(n_experts) | |
_experts: list[dict[str, Tensor]] | None = None | |
# Copied from: Qwen2MoeModel | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# process the experts separately | |
if name.find("experts") != -1: | |
n_experts = self.hparams["num_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for w_name in ["down_proj", "gate_proj", "up_proj"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
# Copied from: Qwen2MoeModel | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._experts is not None: | |
# flatten `list[dict[str, Tensor]]` into `list[str]` | |
experts = [k for d in self._experts for k in d.keys()] | |
if len(experts) > 0: | |
raise ValueError(f"Unprocessed experts: {experts}") | |
class JinaBertV2Model(BertModel): | |
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2 | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.intermediate_size = self.hparams["intermediate_size"] | |
def get_tensors(self): | |
for name, data in super().get_tensors(): | |
if 'gated_layer' in name: | |
d1 = data[:self.intermediate_size, :] | |
name1 = name.replace('gated_layers', 'gated_layers_w') | |
name1 = name1.replace('up_gated_layer', 'gated_layers_v') | |
d2 = data[self.intermediate_size:, :] | |
name2 = name.replace('gated_layers', 'gated_layers_v') | |
name2 = name2.replace('up_gated_layer', 'gated_layers_w') | |
yield name1, d1 | |
yield name2, d2 | |
continue | |
yield name, data | |
def set_vocab(self): | |
tokenizer_class = 'BertTokenizer' | |
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f: | |
tokenizer_class = json.load(f)['tokenizer_class'] | |
if tokenizer_class == 'BertTokenizer': | |
super().set_vocab() | |
elif tokenizer_class == 'RobertaTokenizer': | |
self._set_vocab_gpt2() | |
self.gguf_writer.add_token_type_count(2) | |
else: | |
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel') | |
self.gguf_writer.add_add_bos_token(True) | |
self.gguf_writer.add_add_eos_token(True) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# if name starts with "bert.", remove the prefix | |
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en | |
if name.startswith("bert."): | |
name = name[5:] | |
return super().modify_tensors(data_torch, name, bid) | |
class OpenELMModel(Model): | |
model_arch = gguf.MODEL_ARCH.OPENELM | |
def _make_divisible(v: float | int, divisor: int) -> int: | |
# ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38 | |
new_v = max(divisor, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
ffn_multipliers: list[float] = self.hparams["ffn_multipliers"] | |
ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"] | |
self._n_embd: int = self.hparams["model_dim"] | |
self._num_kv_heads: list[int] = self.hparams["num_kv_heads"] | |
self._num_query_heads: list[int] = self.hparams["num_query_heads"] | |
self._ffn_dims: list[int] = [ | |
OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor) | |
for multiplier in ffn_multipliers | |
] | |
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) | |
assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int) | |
# Uses the tokenizer from meta-llama/Llama-2-7b-hf | |
def set_vocab(self): | |
try: | |
self._set_vocab_sentencepiece() | |
except FileNotFoundError: | |
self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"]) | |
def set_gguf_parameters(self): | |
n_embd = self._n_embd | |
head_dim = self.hparams["head_dim"] | |
rot_pct = 1.0 | |
assert self.block_count == len(self._num_kv_heads) | |
assert self.block_count == len(self._num_query_heads) | |
assert self.block_count == len(self._ffn_dims) | |
self.gguf_writer.add_block_count(self.block_count) | |
self.gguf_writer.add_context_length(self.hparams["max_context_length"]) | |
self.gguf_writer.add_embedding_length(n_embd) | |
self.gguf_writer.add_feed_forward_length(self._ffn_dims) | |
self.gguf_writer.add_head_count(self._num_query_heads) | |
self.gguf_writer.add_head_count_kv(self._num_kv_heads) | |
self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"]) | |
# https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30 | |
self.gguf_writer.add_layer_norm_rms_eps(1e-6) | |
self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim)) | |
self.gguf_writer.add_key_length(head_dim) | |
self.gguf_writer.add_value_length(head_dim) | |
self.gguf_writer.add_file_type(self.ftype) | |
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: | |
if "n_layers" in keys: | |
return self.hparams["num_transformer_layers"] | |
return super().find_hparam(keys, optional) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# split ff | |
if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight": | |
ff_dim = self._ffn_dims[bid] | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]) | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]) | |
return | |
yield (self.map_tensor_name(name), data_torch) | |
class ArcticModel(Model): | |
model_arch = gguf.MODEL_ARCH.ARCTIC | |
def set_vocab(self): | |
# The reason for using a custom implementation here is that the | |
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from | |
# tokenizer.model and used them as BOS and EOS instead of adding new tokens. | |
from sentencepiece import SentencePieceProcessor | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
if not tokenizer_path.is_file(): | |
logger.error(f'Error: Missing {tokenizer_path}') | |
sys.exit(1) | |
# Read the whole vocabulary from the tokenizer.model file | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
# Use the added_tokens_decoder field from tokeniser_config.json as the source | |
# of information about added/redefined tokens and modify them accordingly. | |
tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | |
if tokenizer_config_file.is_file(): | |
with open(tokenizer_config_file, "r", encoding="utf-8") as f: | |
tokenizer_config_json = json.load(f) | |
if "added_tokens_decoder" in tokenizer_config_json: | |
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"] | |
for token_id, token_json in added_tokens_decoder.items(): | |
token_id = int(token_id) | |
if token_id >= vocab_size: | |
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | |
continue | |
token_content = token_json["content"] | |
token_type = SentencePieceTokenTypes.USER_DEFINED | |
token_score = -10000.0 | |
# Map unk_token to UNKNOWN, other special tokens to CONTROL | |
# Set the score to 0.0 as in the original tokenizer.model | |
if ("special" in token_json) and token_json["special"]: | |
if token_content == tokenizer_config_json["unk_token"]: | |
token_type = SentencePieceTokenTypes.UNKNOWN | |
else: | |
token_type = SentencePieceTokenTypes.CONTROL | |
token_score = 0.0 | |
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})") | |
tokens[token_id] = token_content.encode("utf-8") | |
toktypes[token_id] = token_type | |
scores[token_id] = token_score | |
self.gguf_writer.add_tokenizer_model("llama") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
hparams = self.hparams | |
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | |
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | |
_experts: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams.get("num_key_value_heads") | |
if name.endswith("q_proj.weight"): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_head) | |
if name.endswith("k_proj.weight"): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) | |
# process the experts separately | |
if name.find("block_sparse_moe.experts") != -1: | |
n_experts = self.hparams["num_local_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for wid in ["w1", "w2", "w3"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._experts is not None: | |
# flatten `list[dict[str, Tensor]]` into `list[str]` | |
experts = [k for d in self._experts for k in d.keys()] | |
if len(experts) > 0: | |
raise ValueError(f"Unprocessed experts: {experts}") | |
class DeepseekV2Model(Model): | |
model_arch = gguf.MODEL_ARCH.DEEPSEEK2 | |
def set_vocab(self): | |
self._set_vocab_gpt2() | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
hparams = self.hparams | |
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) | |
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | |
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: | |
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) | |
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) | |
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) | |
self.gguf_writer.add_value_length(hparams["v_head_dim"]) | |
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) | |
self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) | |
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) | |
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) | |
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) | |
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: | |
if self.hparams["rope_scaling"].get("type") == "yarn": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) | |
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"]) | |
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"]) | |
_experts: list[dict[str, Tensor]] | None = None | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# process the experts separately | |
if name.find("mlp.experts") != -1: | |
n_experts = self.hparams["n_routed_experts"] | |
assert bid is not None | |
if self._experts is None: | |
self._experts = [{} for _ in range(self.block_count)] | |
self._experts[bid][name] = data_torch | |
if len(self._experts[bid]) >= n_experts * 3: | |
tensors: list[tuple[str, Tensor]] = [] | |
# merge the experts into a single 3d tensor | |
for w_name in ["down_proj", "gate_proj", "up_proj"]: | |
datas: list[Tensor] = [] | |
for xid in range(n_experts): | |
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" | |
datas.append(self._experts[bid][ename]) | |
del self._experts[bid][ename] | |
data_torch = torch.stack(datas, dim=0) | |
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" | |
new_name = self.map_tensor_name(merged_name) | |
tensors.append((new_name, data_torch)) | |
return tensors | |
else: | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
if self._experts is not None: | |
# flatten `list[dict[str, Tensor]]` into `list[str]` | |
experts = [k for d in self._experts for k in d.keys()] | |
if len(experts) > 0: | |
raise ValueError(f"Unprocessed experts: {experts}") | |
class T5Model(Model): | |
model_arch = gguf.MODEL_ARCH.T5 | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.shared_token_embeddings_found = False | |
def set_vocab(self): | |
# to avoid TypeError: Descriptors cannot be created directly | |
# exception when importing sentencepiece_model_pb2 | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
from sentencepiece import SentencePieceProcessor | |
from sentencepiece import sentencepiece_model_pb2 as model | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
# many older models use spiece.model tokenizer model filename | |
if not tokenizer_path.is_file(): | |
tokenizer_path = self.dir_model / 'spiece.model' | |
if not tokenizer_path.is_file(): | |
raise FileNotFoundError(f"File not found: {tokenizer_path}") | |
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] | |
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) | |
# some models like Pile-T5 family use BPE tokenizer instead of Unigram | |
if sentencepiece_model.trainer_spec.model_type == 2: # BPE | |
# assure the tokenizer model file name is correct | |
assert tokenizer_path.name == 'tokenizer.model' | |
return self._set_vocab_sentencepiece() | |
else: | |
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM | |
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix | |
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces | |
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
added_tokens_file = self.dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
added_tokens_json = json.load(f) | |
for key in added_tokens_json: | |
token_id = added_tokens_json[key] | |
if token_id >= vocab_size: | |
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | |
continue | |
tokens[token_id] = key.encode("utf-8") | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if vocab_size > len(tokens): | |
pad_count = vocab_size - len(tokens) | |
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") | |
for i in range(1, pad_count + 1): | |
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) | |
scores.append(-1000.0) | |
toktypes.append(SentencePieceTokenTypes.UNUSED) | |
self.gguf_writer.add_tokenizer_model("t5") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
self.gguf_writer.add_add_space_prefix(add_prefix) | |
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) | |
if precompiled_charsmap: | |
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
self.gguf_writer.add_add_bos_token(False) | |
self.gguf_writer.add_add_eos_token(True) | |
def set_gguf_parameters(self): | |
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: | |
logger.warning("Couldn't find context length in config.json, assuming default value of 512") | |
n_ctx = 512 | |
self.gguf_writer.add_context_length(n_ctx) | |
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) | |
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) | |
self.gguf_writer.add_block_count(self.hparams["num_layers"]) | |
self.gguf_writer.add_head_count(self.hparams["num_heads"]) | |
self.gguf_writer.add_key_length(self.hparams["d_kv"]) | |
self.gguf_writer.add_value_length(self.hparams["d_kv"]) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight", | |
# "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored | |
# in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder | |
# and decoder and ignore the remaining ones. | |
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: | |
if not self.shared_token_embeddings_found: | |
name = "shared.weight" | |
self.shared_token_embeddings_found = True | |
else: | |
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
class T5EncoderModel(Model): | |
model_arch = gguf.MODEL_ARCH.T5ENCODER | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.shared_token_embeddings_found = False | |
def set_vocab(self): | |
# to avoid TypeError: Descriptors cannot be created directly | |
# exception when importing sentencepiece_model_pb2 | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
from sentencepiece import SentencePieceProcessor | |
from sentencepiece import sentencepiece_model_pb2 as model | |
tokenizer_path = self.dir_model / 'tokenizer.model' | |
# many older models use spiece.model tokenizer model filename | |
if not tokenizer_path.is_file(): | |
tokenizer_path = self.dir_model / 'spiece.model' | |
if not tokenizer_path.is_file(): | |
raise FileNotFoundError(f"File not found: {tokenizer_path}") | |
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] | |
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) | |
# some models like Pile-T5 family use BPE tokenizer instead of Unigram | |
if sentencepiece_model.trainer_spec.model_type == 2: # BPE | |
# assure the tokenizer model file name is correct | |
assert tokenizer_path.name == 'tokenizer.model' | |
return self._set_vocab_sentencepiece() | |
else: | |
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM | |
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix | |
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces | |
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap | |
tokenizer = SentencePieceProcessor() | |
tokenizer.LoadFromFile(str(tokenizer_path)) | |
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | |
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | |
scores: list[float] = [-10000.0] * vocab_size | |
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | |
for token_id in range(tokenizer.vocab_size()): | |
piece = tokenizer.IdToPiece(token_id) | |
text = piece.encode("utf-8") | |
score = tokenizer.GetScore(token_id) | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.IsUnknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.IsControl(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.IsUnused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.IsByte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens[token_id] = text | |
scores[token_id] = score | |
toktypes[token_id] = toktype | |
added_tokens_file = self.dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
added_tokens_json = json.load(f) | |
for key in added_tokens_json: | |
token_id = added_tokens_json[key] | |
if token_id >= vocab_size: | |
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | |
continue | |
tokens[token_id] = key.encode("utf-8") | |
scores[token_id] = -1000.0 | |
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED | |
if vocab_size > len(tokens): | |
pad_count = vocab_size - len(tokens) | |
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") | |
for i in range(1, pad_count + 1): | |
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) | |
scores.append(-1000.0) | |
toktypes.append(SentencePieceTokenTypes.UNUSED) | |
self.gguf_writer.add_tokenizer_model("t5") | |
self.gguf_writer.add_tokenizer_pre("default") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
self.gguf_writer.add_add_space_prefix(add_prefix) | |
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) | |
if precompiled_charsmap: | |
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
self.gguf_writer.add_add_bos_token(False) | |
self.gguf_writer.add_add_eos_token(True) | |
def set_gguf_parameters(self): | |
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: | |
logger.warning("Couldn't find context length in config.json, assuming default value of 512") | |
n_ctx = 512 | |
self.gguf_writer.add_context_length(n_ctx) | |
self.gguf_writer.add_embedding_length(self.hparams["d_model"]) | |
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) | |
self.gguf_writer.add_block_count(self.hparams["num_layers"]) | |
self.gguf_writer.add_head_count(self.hparams["num_heads"]) | |
self.gguf_writer.add_key_length(self.hparams["d_kv"]) | |
self.gguf_writer.add_value_length(self.hparams["d_kv"]) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
# T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight", | |
# "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored | |
# in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder | |
# and decoder and ignore the remaining ones. | |
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: | |
if not self.shared_token_embeddings_found: | |
name = "shared.weight" | |
self.shared_token_embeddings_found = True | |
else: | |
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") | |
return [] | |
return [(self.map_tensor_name(name), data_torch)] | |
class JaisModel(Model): | |
model_arch = gguf.MODEL_ARCH.JAIS | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# SwigLU activation | |
assert self.hparams["activation_function"] == "swiglu" | |
# ALiBi position embedding | |
assert self.hparams["position_embedding_type"] == "alibi" | |
# Embeddings scale | |
self.embeddings_scale = 1.0 | |
if 'mup_embeddings_scale' in self.hparams: | |
self.embeddings_scale = self.hparams['mup_embeddings_scale'] | |
elif 'embeddings_scale' in self.hparams: | |
self.embeddings_scale = self.hparams['embeddings_scale'] | |
else: | |
assert False | |
self.width_scale = 1.0 | |
if 'mup_output_alpha' in self.hparams: | |
assert 'mup_width_scale' in self.hparams | |
self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale'] | |
elif 'width_scale' in self.hparams: | |
self.width_scale = self.hparams['width_scale'] | |
else: | |
assert False | |
self.max_alibi_bias = 8.0 | |
def set_vocab(self): | |
self._set_vocab_gpt2() | |
def set_gguf_parameters(self): | |
self.gguf_writer.add_block_count(self.hparams["n_layer"]) | |
self.gguf_writer.add_context_length(self.hparams["n_positions"]) | |
self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) | |
self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"]) | |
self.gguf_writer.add_head_count(self.hparams["n_head"]) | |
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
tensors: list[tuple[str, Tensor]] = [] | |
# we don't need these | |
if name.endswith((".attn.bias")): | |
return tensors | |
if name.endswith(("relative_pe.slopes")): | |
# Calculate max ALiBi bias (this is the inverse of the ALiBi calculation) | |
# Some other models has max_alibi_bias spelled out explicitly in the hyperparams, | |
# but Jais's PyTorch model simply precalculates the slope values and places them | |
# in relative_pes.slopes | |
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) | |
first_val = float(data_torch[0].item()) | |
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) | |
return tensors | |
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")): | |
data_torch = data_torch.transpose(1, 0) | |
new_name = self.map_tensor_name(name) | |
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): | |
tensors.append((new_name, data_torch * self.embeddings_scale)) | |
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): | |
tensors.append((new_name, data_torch * self.width_scale)) | |
else: | |
tensors.append((new_name, data_torch)) | |
return tensors | |
def prepare_tensors(self): | |
super().prepare_tensors() | |
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) | |
class ChatGLMModel(Model): | |
model_arch = gguf.MODEL_ARCH.CHATGLM | |
def set_vocab_chatglm3(self): | |
dir_model = self.dir_model | |
hparams = self.hparams | |
tokens: list[bytes] = [] | |
toktypes: list[int] = [] | |
scores: list[float] = [] | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | |
vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab())) | |
assert max(tokenizer.get_vocab().values()) < vocab_size | |
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] | |
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens | |
for token_id in range(vocab_size): | |
piece = tokenizer._convert_id_to_token(token_id) | |
if token_id == 0: | |
piece = "<unk>" | |
elif token_id == 1: | |
piece = "<bos>" | |
elif token_id == 2: | |
piece = "<eos>" | |
text = piece.encode("utf-8") | |
score = 0.0 | |
# Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py), | |
# it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size() | |
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): | |
score = tokenizer.tokenizer.sp_model.get_score(token_id) | |
if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): | |
if piece in special_tokens: | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif len(piece) == 0: | |
text = f"[PAD{token_id}]".encode("utf-8") | |
toktype = SentencePieceTokenTypes.UNUSED | |
else: | |
toktype = SentencePieceTokenTypes.USER_DEFINED | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
continue | |
toktype = SentencePieceTokenTypes.NORMAL | |
if tokenizer.tokenizer.sp_model.is_unknown(token_id): | |
toktype = SentencePieceTokenTypes.UNKNOWN | |
elif tokenizer.tokenizer.sp_model.is_control(token_id): | |
toktype = SentencePieceTokenTypes.CONTROL | |
elif tokenizer.tokenizer.sp_model.is_unused(token_id): | |
toktype = SentencePieceTokenTypes.UNUSED | |
elif tokenizer.tokenizer.sp_model.is_byte(token_id): | |
toktype = SentencePieceTokenTypes.BYTE | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
self.gguf_writer.add_tokenizer_model("llama") | |
# glm3 needs prefix and suffix formatted as: | |
# prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>" | |
self.gguf_writer.add_tokenizer_pre("chatglm-spm") | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_scores(scores) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def token_bytes_to_string(b): | |
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode | |
byte_encoder = bytes_to_unicode() | |
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) | |
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: | |
parts = [bytes([b]) for b in token] | |
while True: | |
min_idx = None | |
min_rank = None | |
for i, pair in enumerate(zip(parts[:-1], parts[1:])): | |
rank = mergeable_ranks.get(pair[0] + pair[1]) | |
if rank is not None and (min_rank is None or rank < min_rank): | |
min_idx = i | |
min_rank = rank | |
if min_rank is None or (max_rank is not None and min_rank >= max_rank): | |
break | |
assert min_idx is not None | |
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] | |
return parts | |
def set_vocab(self): | |
if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""): | |
self.set_vocab_chatglm3() | |
return | |
dir_model = self.dir_model | |
hparams = self.hparams | |
tokens: list[str] = [] | |
toktypes: list[int] = [] | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | |
vocab_size = hparams["padded_vocab_size"] | |
assert max(tokenizer.get_vocab().values()) < vocab_size | |
tokpre = self.get_vocab_base_pre(tokenizer) | |
merges = [] | |
vocab = {} | |
mergeable_ranks = tokenizer.mergeable_ranks | |
for token, rank in mergeable_ranks.items(): | |
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank | |
if len(token) == 1: | |
continue | |
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank) | |
assert len(merged) >= 2 and len(merged) <= 7 | |
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged))) | |
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined | |
added_vocab = tokenizer.get_added_vocab() | |
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} | |
for i in range(vocab_size): | |
if i not in reverse_vocab: | |
tokens.append(f"[PAD{i}]") | |
toktypes.append(gguf.TokenType.UNUSED) | |
elif reverse_vocab[i] in added_vocab: | |
tokens.append(reverse_vocab[i]) | |
if tokenizer.added_tokens_decoder[i].special: | |
toktypes.append(gguf.TokenType.CONTROL) | |
else: | |
toktypes.append(gguf.TokenType.USER_DEFINED) | |
else: | |
tokens.append(reverse_vocab[i]) | |
toktypes.append(gguf.TokenType.NORMAL) | |
self.gguf_writer.add_tokenizer_model("gpt2") | |
self.gguf_writer.add_tokenizer_pre(tokpre) | |
self.gguf_writer.add_token_list(tokens) | |
self.gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) | |
special_vocab.merges = merges | |
# only add special tokens when they were not already loaded from config.json | |
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"]) | |
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) | |
# this one is usually not in config.json anyway | |
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) | |
special_vocab.add_to_gguf(self.gguf_writer) | |
def set_gguf_parameters(self): | |
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) | |
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) | |
n_head_kv = self.hparams.get("multi_query_group_num", n_head) | |
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) | |
self.gguf_writer.add_embedding_length(n_embed) | |
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed)) | |
self.gguf_writer.add_block_count(self.hparams["num_layers"]) | |
self.gguf_writer.add_head_count(n_head) | |
self.gguf_writer.add_head_count_kv(n_head_kv) | |
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"]) | |
self.gguf_writer.add_file_type(self.ftype) | |
self.gguf_writer.add_rope_dimension_count(64) | |
self.gguf_writer.add_add_bos_token(False) | |
rope_freq = 10000 | |
if "rope_ratio" in self.hparams: | |
rope_freq = rope_freq * self.hparams["rope_ratio"] | |
self.gguf_writer.add_rope_freq_base(rope_freq) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
del bid # unused | |
if name.endswith(".rotary_pos_emb.inv_freq"): | |
return [] | |
name = name.removeprefix("transformer.") | |
return [(self.map_tensor_name(name), data_torch)] | |
class NemotronModel(Model): | |
model_arch = gguf.MODEL_ARCH.NEMOTRON | |
def set_vocab(self): | |
self._set_vocab_sentencepiece() | |
self.gguf_writer.add_pad_token_id(0) | |
self.gguf_writer.add_unk_token_id(1) | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
hparams = self.hparams | |
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | |
f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"]) | |
self.gguf_writer.add_layer_norm_eps(f_norm_eps) | |
# * Partial RoPE | |
rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"]) | |
n_embd = self.find_hparam(["hidden_size", "n_embd"]) | |
n_head = self.find_hparam(["num_attention_heads", "n_head"]) | |
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) | |
# * RopeScaling for Nemotron | |
if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None: | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) | |
else: | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"]) | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side | |
# model.layers.{l}.input_layernorm.weight | |
# model.layers.{l}.post_attention_layernorm.weight | |
# model.norm.weight | |
if name.endswith("norm.weight"): | |
data_torch = data_torch + 1 | |
return [(self.map_tensor_name(name), data_torch)] | |
class ExaoneModel(Model): | |
model_arch = gguf.MODEL_ARCH.EXAONE | |
def set_gguf_parameters(self): | |
hparams = self.hparams | |
assert (hparams["activation_function"] == "silu") | |
max_position_embeddings = hparams["max_position_embeddings"] | |
embed_dim = hparams["hidden_size"] | |
num_heads = hparams["num_attention_heads"] | |
num_kv_heads = hparams.get("num_key_value_heads", num_heads) | |
layer_norm_eps = hparams["layer_norm_epsilon"] | |
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim | |
num_layers = hparams["num_layers"] | |
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0 | |
# attention_dropout_rate = hparams["attention_dropout"] | |
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0 | |
# embed_dropout_rate = hparams["embed_dropout"] | |
self.gguf_writer.add_embedding_length(embed_dim) | |
self.gguf_writer.add_head_count(num_heads) | |
self.gguf_writer.add_head_count_kv(num_kv_heads) | |
self.gguf_writer.add_context_length(max_position_embeddings) | |
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) | |
self.gguf_writer.add_feed_forward_length(intermediate_size) | |
self.gguf_writer.add_block_count(num_layers) | |
self.gguf_writer.add_file_type(self.ftype) | |
if (rope_theta := self.hparams.get("rope_theta")) is not None: | |
self.gguf_writer.add_rope_freq_base(rope_theta) | |
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) | |
rotary_factor = rotary_factor if rotary_factor is not None else 1.0 | |
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) | |
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]: | |
if hparams["rope_scaling"].get("type") == "linear": | |
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | |
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) | |
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: | |
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): | |
if rope_scaling.get("rope_type", '').lower() == "llama3": | |
base = self.hparams.get("rope_theta", 10000.0) | |
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | |
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) | |
factor = rope_scaling.get("factor", 8.0) | |
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) | |
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) | |
old_context_len = self.hparams.get("original_max_position_embeddings", 8192) | |
low_freq_wavelen = old_context_len / low_freq_factor | |
high_freq_wavelen = old_context_len / high_freq_factor | |
assert low_freq_wavelen != high_freq_wavelen | |
rope_factors = [] | |
for freq in freqs: | |
wavelen = 2 * math.pi / freq | |
if wavelen < high_freq_wavelen: | |
rope_factors.append(1) | |
elif wavelen > low_freq_wavelen: | |
rope_factors.append(factor) | |
else: | |
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) | |
rope_factors.append(1 / ((1 - smooth) / factor + smooth)) | |
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) | |
class GraniteModel(LlamaModel): | |
"""Conversion for IBM's GraniteForCausalLM""" | |
model_arch = gguf.MODEL_ARCH.GRANITE | |
def set_gguf_parameters(self): | |
"""Granite uses standard llama parameters with the following differences: | |
- No head_dim support | |
- New multiplier params: | |
- attention_scale | |
- embedding_scale | |
- residual_scale | |
- logits_scaling | |
""" | |
if head_dim := self.hparams.pop("head_dim", None): | |
logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim) | |
super().set_gguf_parameters() | |
# NOTE: Convert _multiplier params to _scale params for naming | |
# consistency | |
if attention_scale := self.hparams.get("attention_multiplier"): | |
self.gguf_writer.add_attention_scale(attention_scale) | |
logger.info("gguf: (granite) attention_scale = %s", attention_scale) | |
if embedding_scale := self.hparams.get("embedding_multiplier"): | |
self.gguf_writer.add_embedding_scale(embedding_scale) | |
logger.info("gguf: (granite) embedding_scale = %s", embedding_scale) | |
if residual_scale := self.hparams.get("residual_multiplier"): | |
self.gguf_writer.add_residual_scale(residual_scale) | |
logger.info("gguf: (granite) residual_scale = %s", residual_scale) | |
if logits_scale := self.hparams.get("logits_scaling"): | |
self.gguf_writer.add_logit_scale(logits_scale) | |
logger.info("gguf: (granite) logits_scale = %s", logits_scale) | |
class GraniteMoeModel(GraniteModel): | |
"""Conversion for IBM's GraniteMoeForCausalLM""" | |
model_arch = gguf.MODEL_ARCH.GRANITE_MOE | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
"""In modeling_granitemoe, the JetMoe implementation of parallel experts | |
is used. This essentially merges w1 and w3 into a single tensor with 2x | |
the hidden size that is then split during forward. To keep compatibility | |
with existing mixtral support, we pull them apart here. | |
""" | |
if name.endswith("block_sparse_moe.input_linear.weight"): | |
ffn_dim = self.hparams["intermediate_size"] | |
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size" | |
gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :] | |
return [ | |
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate), | |
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up), | |
] | |
return super().modify_tensors(data_torch, name, bid) | |
# obsolete | |
class ChameleonModel(Model): | |
model_arch = gguf.MODEL_ARCH.CHAMELEON | |
def set_gguf_parameters(self): | |
super().set_gguf_parameters() | |
self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False)) | |
def set_vocab(self): | |
self._set_vocab_gpt2() | |
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | |
# ignore image tokenizer for now | |
# TODO: remove this once image support is implemented for Chameleon | |
if name.startswith("model.vqmodel"): | |
return [] | |
n_head = self.hparams["num_attention_heads"] | |
n_kv_head = self.hparams.get("num_key_value_heads") | |
hidden_dim = self.hparams.get("hidden_size") | |
if name.endswith(("q_proj.weight", "q_proj.bias")): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_head) | |
if name.endswith(("k_proj.weight", "k_proj.bias")): | |
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) | |
if name.endswith(("q_norm.weight", "q_norm.bias")): | |
data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim) | |
if name.endswith(("k_norm.weight", "k_norm.bias")): | |
data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim) | |
return [(self.map_tensor_name(name), data_torch)] | |
# see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203 | |
def _reverse_hf_permute(data_torch, n_heads, hidden_dim): | |
head_dim = hidden_dim // n_heads | |
data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1) | |
data_torch = data_torch.repeat_interleave(n_heads, 0) | |
return data_torch | |
###### CONVERSION LOGIC ###### | |
# tree of lazy tensors | |
class LazyTorchTensor(gguf.LazyBase): | |
_tensor_type = torch.Tensor | |
# to keep the type-checker happy | |
dtype: torch.dtype | |
shape: torch.Size | |
# only used when converting a torch.Tensor to a np.ndarray | |
_dtype_map: dict[torch.dtype, type] = { | |
torch.float16: np.float16, | |
torch.float32: np.float32, | |
} | |
# used for safetensors slices | |
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046 | |
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734 | |
_dtype_str_map: dict[str, torch.dtype] = { | |
"F64": torch.float64, | |
"F32": torch.float32, | |
"BF16": torch.bfloat16, | |
"F16": torch.float16, | |
# "U64": torch.uint64, | |
"I64": torch.int64, | |
# "U32": torch.uint32, | |
"I32": torch.int32, | |
# "U16": torch.uint16, | |
"I16": torch.int16, | |
"U8": torch.uint8, | |
"I8": torch.int8, | |
"BOOL": torch.bool, | |
"F8_E4M3": torch.float8_e4m3fn, | |
"F8_E5M2": torch.float8_e5m2, | |
} | |
def numpy(self) -> gguf.LazyNumpyTensor: | |
dtype = self._dtype_map[self.dtype] | |
return gguf.LazyNumpyTensor( | |
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape), | |
args=(self,), | |
func=(lambda s: s.numpy()) | |
) | |
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor: | |
return torch.empty(size=shape, dtype=dtype, device="meta") | |
def from_safetensors_slice(cls, st_slice: Any) -> Tensor: | |
dtype = cls._dtype_str_map[st_slice.get_dtype()] | |
shape: tuple[int, ...] = tuple(st_slice.get_shape()) | |
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:]) | |
return cast(torch.Tensor, lazy) | |
def __torch_function__(cls, func, types, args=(), kwargs=None): | |
del types # unused | |
if kwargs is None: | |
kwargs = {} | |
if func is torch.Tensor.numpy: | |
return args[0].numpy() | |
return cls._wrap_fn(func)(*args, **kwargs) | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser( | |
description="Convert a huggingface model to a GGML compatible file") | |
parser.add_argument( | |
"--vocab-only", action="store_true", | |
help="extract only the vocab", | |
) | |
parser.add_argument( | |
"--outfile", type=Path, | |
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", | |
) | |
parser.add_argument( | |
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16", | |
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", | |
) | |
parser.add_argument( | |
"--bigendian", action="store_true", | |
help="model is executed on big endian machine", | |
) | |
parser.add_argument( | |
"model", type=Path, | |
help="directory containing model file", | |
) | |
parser.add_argument( | |
"--use-temp-file", action="store_true", | |
help="use the tempfile library while processing (helpful when running out of memory, process killed)", | |
) | |
parser.add_argument( | |
"--no-lazy", action="store_true", | |
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)", | |
) | |
parser.add_argument( | |
"--model-name", type=str, default=None, | |
help="name of the model", | |
) | |
parser.add_argument( | |
"--verbose", action="store_true", | |
help="increase output verbosity", | |
) | |
parser.add_argument( | |
"--split-max-tensors", type=int, default=0, | |
help="max tensors in each split", | |
) | |
parser.add_argument( | |
"--split-max-size", type=str, default="0", | |
help="max size per split N(M|G)", | |
) | |
parser.add_argument( | |
"--dry-run", action="store_true", | |
help="only print out a split plan and exit, without writing any new files", | |
) | |
parser.add_argument( | |
"--no-tensor-first-split", action="store_true", | |
help="do not add tensors to the first split (disabled by default)" | |
) | |
parser.add_argument( | |
"--metadata", type=Path, | |
help="Specify the path for an authorship metadata override file" | |
) | |
return parser.parse_args() | |
def split_str_to_n_bytes(split_str: str) -> int: | |
if split_str.endswith("K"): | |
n = int(split_str[:-1]) * 1000 | |
elif split_str.endswith("M"): | |
n = int(split_str[:-1]) * 1000 * 1000 | |
elif split_str.endswith("G"): | |
n = int(split_str[:-1]) * 1000 * 1000 * 1000 | |
elif split_str.isnumeric(): | |
n = int(split_str) | |
else: | |
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G") | |
if n < 0: | |
raise ValueError(f"Invalid split size: {split_str}, must be positive") | |
return n | |
def main() -> None: | |
args = parse_args() | |
if args.verbose: | |
logging.basicConfig(level=logging.DEBUG) | |
else: | |
logging.basicConfig(level=logging.INFO) | |
dir_model = args.model | |
if not dir_model.is_dir(): | |
logger.error(f'Error: {args.model} is not a directory') | |
sys.exit(1) | |
ftype_map: dict[str, gguf.LlamaFileType] = { | |
"f32": gguf.LlamaFileType.ALL_F32, | |
"f16": gguf.LlamaFileType.MOSTLY_F16, | |
"bf16": gguf.LlamaFileType.MOSTLY_BF16, | |
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, | |
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0, | |
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0, | |
"auto": gguf.LlamaFileType.GUESSED, | |
} | |
is_split = args.split_max_tensors > 0 or args.split_max_size != "0" | |
if args.use_temp_file and is_split: | |
logger.error("Error: Cannot use temp file when splitting") | |
sys.exit(1) | |
if args.outfile is not None: | |
fname_out = args.outfile | |
else: | |
fname_out = dir_model | |
logger.info(f"Loading model: {dir_model.name}") | |
hparams = Model.load_hparams(dir_model) | |
with torch.inference_mode(): | |
output_type = ftype_map[args.outtype] | |
model_architecture = hparams["architectures"][0] | |
try: | |
model_class = Model.from_model_architecture(model_architecture) | |
except NotImplementedError: | |
logger.error(f"Model {model_architecture} is not supported") | |
sys.exit(1) | |
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out, | |
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file, | |
eager=args.no_lazy, | |
metadata_override=args.metadata, model_name=args.model_name, | |
split_max_tensors=args.split_max_tensors, | |
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run, | |
small_first_shard=args.no_tensor_first_split) | |
if args.vocab_only: | |
logger.info("Exporting model vocab...") | |
model_instance.write_vocab() | |
logger.info(f"Model vocab successfully exported to {model_instance.fname_out}") | |
else: | |
logger.info("Exporting model...") | |
model_instance.write() | |
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out | |
logger.info(f"Model successfully exported to {out_path}") | |
if __name__ == '__main__': | |
main() | |