|
import os |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from PyPDF2 import PdfReader |
|
from langchain_community.llms import llamacpp |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler |
|
from langchain.vectorstores import Chroma |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory |
|
from langchain.prompts import PromptTemplate,SystemMessagePromptTemplate,ChatPromptTemplate |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain |
|
from langchain.text_splitter import TokenTextSplitter,RecursiveCharacterTextSplitter |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from langchain_community.document_loaders.directory import DirectoryLoader |
|
from langchain.document_loaders import PyPDFLoader |
|
from htmlTemplates import css, bot_template, user_template |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain import hub |
|
|
|
|
|
|
|
|
|
|
|
|
|
lang_api_key = os.getenv("lang_api_key") |
|
|
|
os.environ["LANGCHAIN_TRACING_V2"] = "true" |
|
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" |
|
os.environ["LANGCHAIN_API_KEY"] = lang_api_key |
|
os.environ["LANGCHAIN_PROJECT"] = "Chat with multiple PDFs" |
|
|
|
|
|
def get_pdf_text(pdf_docs): |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
def get_text_chunks(text): |
|
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( |
|
chunk_size=250, chunk_overlap=50, |
|
separators=["\n \n \n", "\n \n", "\n1", "(?<=\. )", " ", ""], |
|
) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
def get_vectorstore(text_chunks): |
|
model_name = "Alibaba-NLP/gte-base-en-v1.5" |
|
model_kwargs = {'device': 'cpu', |
|
"trust_remote_code" : 'True'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embeddings = HuggingFaceEmbeddings( |
|
model_name=model_name, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
vectorstore = Chroma.from_texts( |
|
texts=text_chunks, embedding=embeddings, persist_directory="docs/chroma/") |
|
return vectorstore |
|
|
|
|
|
|
|
def get_conversation_chain(vectorstore): |
|
|
|
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) |
|
|
|
|
|
llm = llamacpp.LlamaCpp( |
|
model_path="qwen2-0_5b-instruct-q8_0.gguf", |
|
n_gpu_layers=0, |
|
temperature=0.1, |
|
top_p = 0.9, |
|
n_ctx=20000, |
|
n_batch=2000, |
|
max_tokens = 300, |
|
repeat_penalty=1.9, |
|
last_n_tokens_size = 300, |
|
|
|
|
|
verbose=False, |
|
) |
|
|
|
|
|
|
|
retriever = vectorstore.as_retriever(search_type='mmr', k=7) |
|
|
|
|
|
|
|
|
|
prompt = hub.pull("rlm/rag-prompt") |
|
rag_chain = ({"context": retriever} | prompt | llm | StrOutputParser()) |
|
|
|
|
|
return rag_chain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") |
|
st.write(css, unsafe_allow_html=True) |
|
|
|
st.header("Chat with multiple PDFs :books:") |
|
|
|
|
|
|
|
|
|
if user_question := st.text_input("Ask a question about your documents:"): |
|
handle_userinput(user_question) |
|
|
|
|
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
pdf_docs = st.file_uploader( |
|
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) |
|
if st.button("Process"): |
|
with st.spinner("Processing"): |
|
|
|
raw_text = get_pdf_text(pdf_docs) |
|
|
|
|
|
text_chunks = get_text_chunks(raw_text) |
|
|
|
|
|
vectorstore = get_vectorstore(text_chunks) |
|
|
|
|
|
st.session_state.conversation = get_conversation_chain( |
|
vectorstore) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def handle_userinput(user_question ): |
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state["chat_history"] = [ |
|
{"role": "assistant", "content": "Hi, I'm a Q&A chatbot who is based on your imported pdf documents . How can I help you?"} |
|
] |
|
|
|
|
|
st.session_state.chat_history.append({"role": "user", "content": user_question}) |
|
|
|
|
|
|
|
|
|
|
|
response = st.session_state.conversation({"question": user_question}) |
|
st.session_state.chat_history.append({"role": "assistant", "content": response}) |
|
|
|
for i, message in enumerate(st.session_state.chat_history): |
|
if i % 2 == 0: |
|
st.write(user_template.replace( |
|
"{{MSG}}", message['content']), unsafe_allow_html=True) |
|
else: |
|
st.write(bot_template.replace( |
|
"{{MSG}}", message['content']), unsafe_allow_html=True) |
|
|
|
st.subheader("Your documents") |
|
|
|
for doc in docs: |
|
st.write(f"Document: {doc}") |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|