Update app.py
Browse files
app.py
CHANGED
@@ -68,7 +68,7 @@ def get_vectorstore(text_chunks):
|
|
68 |
|
69 |
|
70 |
|
71 |
-
def get_conversation_chain():
|
72 |
|
73 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
74 |
|
@@ -90,33 +90,18 @@ def get_conversation_chain():
|
|
90 |
|
91 |
|
92 |
|
93 |
-
|
94 |
|
95 |
|
96 |
|
97 |
|
98 |
prompt = hub.pull("rlm/rag-prompt")
|
99 |
-
rag_chain = prompt | llm | StrOutputParser()
|
100 |
|
101 |
|
102 |
return rag_chain
|
103 |
|
104 |
-
def sidebar():
|
105 |
-
with st.sidebar:
|
106 |
-
st.subheader("Your documents")
|
107 |
-
pdf_docs = st.file_uploader("For Chatbot to get alive, upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
108 |
-
|
109 |
-
if st.button("Process"):
|
110 |
-
if pdf_docs:
|
111 |
-
with st.spinner("Processing"):
|
112 |
-
# ... your processing code ...
|
113 |
-
vectorstore = get_vectorstore(text_chunks)
|
114 |
-
conversation = get_conversation_chain()
|
115 |
-
st.success("Files have been processed into a vector store.")
|
116 |
-
else:
|
117 |
-
st.write("Kazkas neto")
|
118 |
|
119 |
-
return vectorstore, conversation
|
120 |
|
121 |
|
122 |
|
@@ -141,7 +126,24 @@ def main():
|
|
141 |
handle_userinput(user_question, vectorstore, conversation)
|
142 |
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
145 |
|
146 |
|
147 |
|
@@ -165,7 +167,7 @@ def handle_userinput(user_question,vectorstore,conversation ):
|
|
165 |
st.session_state.chat_history.append({"role": "user", "content": user_question})
|
166 |
|
167 |
|
168 |
-
retriever =
|
169 |
docs = retriever.invoke(user_question)
|
170 |
|
171 |
|
@@ -173,7 +175,7 @@ def handle_userinput(user_question,vectorstore,conversation ):
|
|
173 |
doc_txt = [doc.page_content for doc in docs]
|
174 |
|
175 |
# Invoke conversation chain
|
176 |
-
response = conversation.invoke({"context": docs, "question": user_question})
|
177 |
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
178 |
|
179 |
for i, message in enumerate(st.session_state.chat_history):
|
|
|
68 |
|
69 |
|
70 |
|
71 |
+
def get_conversation_chain(vectorstore):
|
72 |
|
73 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
74 |
|
|
|
90 |
|
91 |
|
92 |
|
93 |
+
retriever = vectorstore.as_retriever(search_type='mmr', k=7)
|
94 |
|
95 |
|
96 |
|
97 |
|
98 |
prompt = hub.pull("rlm/rag-prompt")
|
99 |
+
rag_chain = retriever | prompt | llm | StrOutputParser()
|
100 |
|
101 |
|
102 |
return rag_chain
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
105 |
|
106 |
|
107 |
|
|
|
126 |
handle_userinput(user_question, vectorstore, conversation)
|
127 |
|
128 |
|
129 |
+
with st.sidebar:
|
130 |
+
st.subheader("Your documents")
|
131 |
+
pdf_docs = st.file_uploader(
|
132 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
133 |
+
if st.button("Process"):
|
134 |
+
with st.spinner("Processing"):
|
135 |
+
# get pdf text
|
136 |
+
raw_text = get_pdf_text(pdf_docs)
|
137 |
+
|
138 |
+
# get the text chunks
|
139 |
+
text_chunks = get_text_chunks(raw_text)
|
140 |
+
|
141 |
+
# create vector store
|
142 |
+
vectorstore = get_vectorstore(text_chunks)
|
143 |
|
144 |
+
# create conversation chain
|
145 |
+
st.session_state.conversation = get_conversation_chain(
|
146 |
+
vectorstore)
|
147 |
|
148 |
|
149 |
|
|
|
167 |
st.session_state.chat_history.append({"role": "user", "content": user_question})
|
168 |
|
169 |
|
170 |
+
retriever = st.session_state.conversation.retriever()
|
171 |
docs = retriever.invoke(user_question)
|
172 |
|
173 |
|
|
|
175 |
doc_txt = [doc.page_content for doc in docs]
|
176 |
|
177 |
# Invoke conversation chain
|
178 |
+
response = st.session_state.conversation.invoke({"context": docs, "question": user_question})
|
179 |
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
180 |
|
181 |
for i, message in enumerate(st.session_state.chat_history):
|