import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain_community.llms import llamacpp from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from langchain.chat_models import ChatOpenAI from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate,SystemMessagePromptTemplate,ChatPromptTemplate from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain from langchain.text_splitter import TokenTextSplitter,RecursiveCharacterTextSplitter from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_community.document_loaders.directory import DirectoryLoader from langchain.document_loaders import PyPDFLoader from htmlTemplates import css, bot_template, user_template from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain import hub lang_api_key = os.getenv("lang_api_key") os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" os.environ["LANGCHAIN_API_KEY"] = lang_api_key os.environ["LANGCHAIN_PROJECT"] = "Chat with multiple PDFs" def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=250, chunk_overlap=50, separators=["\n \n \n", "\n \n", "\n1", "(?<=\. )", " ", ""], ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): model_name = "Alibaba-NLP/gte-base-en-v1.5" model_kwargs = {'device': 'cpu', "trust_remote_code" : 'True'} encode_kwargs = {'normalize_embeddings': True} embeddings = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) vectorstore = Chroma.from_texts( texts=text_chunks, embedding=embeddings, persist_directory="docs/chroma/") return vectorstore def get_conversation_chain(vectorstore): callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = llamacpp.LlamaCpp( model_path="qwen2-0_5b-instruct-q8_0.gguf", n_gpu_layers=0, temperature=0.1, top_p = 0.9, n_ctx=20000, n_batch=2000, max_tokens = 300, repeat_penalty=1.9, last_n_tokens_size = 300, #callback_manager=callback_manager, verbose=False, ) retriever = vectorstore.as_retriever(search_type='mmr', k=7) prompt = hub.pull("rlm/rag-prompt") rag_chain = ({"context": retriever} | prompt | llm | StrOutputParser(),return_source_documents = True) return rag_chain def main(): st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) st.header("Chat with multiple PDFs :books:") if user_question := st.text_input("Ask a question about your documents:"): handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) def handle_userinput(user_question ): if "chat_history" not in st.session_state: st.session_state["chat_history"] = [ {"role": "assistant", "content": "Hi, I'm a Q&A chatbot who is based on your imported pdf documents . How can I help you?"} ] st.session_state.chat_history.append({"role": "user", "content": user_question}) retriever = st.session_state.conversation.retriever() docs = retriever.invoke(user_question) doc_txt = [doc.page_content for doc in docs] # Invoke conversation chain response = st.session_state.conversation.invoke({"question": user_question}) st.session_state.chat_history.append({"role": "assistant", "content": response}) for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message['content']), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message['content']), unsafe_allow_html=True) st.subheader("Your documents") for doc in docs: st.write(f"Document: {doc}") if __name__ == '__main__': main()