File size: 14,943 Bytes
73c83cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import argparse, torch, os
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL
from typing import List
from util.common import open_folder
from util.image import pil_to_binary_mask, save_output_image
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc

parser = argparse.ArgumentParser()
parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.")
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
parser.add_argument("--fixed_vae", action="store_true", default=True,  help="Use fixed vae for FP16.")
args = parser.parse_args()

load_mode = args.load_mode
fixed_vae = args.fixed_vae

dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = 'yisol/IDM-VTON'
vae_model_id = 'madebyollin/sdxl-vae-fp16-fix'

dtypeQuantize = dtype

if(load_mode in ('4bit','8bit')):
    dtypeQuantize = torch.float8_e4m3fn

ENABLE_CPU_OFFLOAD = args.lowvram
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.allow_tf32 = False
need_restart_cpu_offloading = False

unet = None
pipe = None
UNet_Encoder = None
example_path = os.path.join(os.path.dirname(__file__), 'example')

def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images):
    global pipe, unet, UNet_Encoder, need_restart_cpu_offloading

    if pipe == None:
        unet = UNet2DConditionModel.from_pretrained(
            model_id,
            subfolder="unet",
            torch_dtype=dtypeQuantize,
        )
        if load_mode == '4bit':
            quantize_4bit(unet)
            
        unet.requires_grad_(False)
       
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            model_id,
            subfolder="image_encoder",
            torch_dtype=torch.float16,
            )
        if load_mode == '4bit':
            quantize_4bit(image_encoder)
        
        if fixed_vae:
            vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype)
        else:            
            vae = AutoencoderKL.from_pretrained(model_id,
                                                subfolder="vae",
                                                torch_dtype=dtype,
            )

        # "stabilityai/stable-diffusion-xl-base-1.0",
        UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
            model_id,
            subfolder="unet_encoder",
            torch_dtype=dtypeQuantize,
        )
     
        if load_mode == '4bit':
            quantize_4bit(UNet_Encoder)

        UNet_Encoder.requires_grad_(False)
        image_encoder.requires_grad_(False)
        vae.requires_grad_(False)
        unet.requires_grad_(False)
              
        pipe_param = {
                'pretrained_model_name_or_path': model_id,
                'unet': unet,     
                'torch_dtype': dtype,   
                'vae': vae,
                'image_encoder': image_encoder,
                'feature_extractor': CLIPImageProcessor(),
            }
        
        pipe = TryonPipeline.from_pretrained(**pipe_param).to(device)
        pipe.unet_encoder = UNet_Encoder    
        pipe.unet_encoder.to(pipe.unet.device)

        if load_mode == '4bit':
            if pipe.text_encoder is not None:
                quantize_4bit(pipe.text_encoder)
            if pipe.text_encoder_2 is not None:
                quantize_4bit(pipe.text_encoder_2)
           
    else:
        if ENABLE_CPU_OFFLOAD:
            need_restart_cpu_offloading =True
    
    torch_gc() 
    parsing_model = Parsing(0)
    openpose_model = OpenPose(0)
    openpose_model.preprocessor.body_estimation.model.to(device)
    tensor_transfrom = transforms.Compose(
                    [
                        transforms.ToTensor(),
                        transforms.Normalize([0.5], [0.5]),
                    ]
            )
    
    if need_restart_cpu_offloading:
        restart_cpu_offload(pipe, load_mode)
    elif ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()

    #if load_mode != '4bit' :
    #    pipe.enable_xformers_memory_efficient_attention()    

    garm_img= garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")    
    
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))

    if is_checked:
        keypoints = openpose_model(human_img.resize((384,512)))
        model_parse, _ = parsing_model(human_img.resize((384,512)))
        mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
        mask = mask.resize((768,1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
        # mask = transforms.ToTensor()(mask)
        # mask = mask.unsqueeze(0)
    
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    # verbosity = getattr(args, "verbosity", None)
    pose_img = args.func(args,human_img_arg)    
    pose_img = pose_img[:,:,::-1]    
    pose_img = Image.fromarray(pose_img).resize((768,1024))
    
    if pipe.text_encoder is not None:        
        pipe.text_encoder.to(device)

    if pipe.text_encoder_2 is not None:
        pipe.text_encoder_2.to(device)

    with torch.no_grad():
        # Extract the images
        with torch.cuda.amp.autocast(dtype=dtype):
            with torch.no_grad():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )
                                    
                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )

                    pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
                    garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
                    results = []
                    current_seed = seed
                    for i in range(number_of_images):  
                        if is_randomize_seed:
                            current_seed = torch.randint(0, 2**32, size=(1,)).item()                        
                        generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None                     
                        current_seed = current_seed + i

                        images = pipe(
                            prompt_embeds=prompt_embeds.to(device,dtype),
                            negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
                            pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
                            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
                            num_inference_steps=denoise_steps,
                            generator=generator,
                            strength = 1.0,
                            pose_img = pose_img.to(device,dtype),
                            text_embeds_cloth=prompt_embeds_c.to(device,dtype),
                            cloth = garm_tensor.to(device,dtype),
                            mask_image=mask,
                            image=human_img, 
                            height=1024,
                            width=768,
                            ip_adapter_image = garm_img.resize((768,1024)),
                            guidance_scale=2.0,
                            dtype=dtype,
                            device=device,
                        )[0]
                        if is_checked_crop:
                            out_img = images[0].resize(crop_size)        
                            human_img_orig.paste(out_img, (int(left), int(top)))   
                            img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed)
                            results.append(img_path)
                        else:
                            img_path = save_output_image(images[0], base_path="outputs", base_filename='img')
                            results.append(img_path)
                    return results, mask_gray
    
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

human_ex_list = []
for ex_human in human_list_path:
    if "Jensen" in ex_human or "sam1 (1)" in ex_human:
        ex_dict = {}
        ex_dict['background'] = ex_human
        ex_dict['layers'] = None
        ex_dict['composite'] = None
        human_ex_list.append(ex_dict)

image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    gr.Markdown("## V7 - IDM-VTON πŸ‘•πŸ‘”πŸ‘š improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942")
    gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
            with gr.Row():
                category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body")
                is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
            with gr.Row():
                is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True)

            example = gr.Examples(
                inputs=imgs,
                examples_per_page=2,
                examples=human_ex_list
            )

        with gr.Column():
            garm_img = gr.Image(label="Garment", sources='upload', type="pil")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
        with gr.Column():
            with gr.Row():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
            with gr.Row():
                btn_open_outputs = gr.Button("Open Outputs Folder")
                btn_open_outputs.click(fn=open_folder)
        with gr.Column():
            with gr.Row():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                image_gallery = gr.Gallery(label="Generated Images", show_label=True)
            with gr.Row():
                try_button = gr.Button(value="Try-on")
                denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1)
                seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1)
                is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True)  
                number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1)


    try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon')

image_blocks.launch(inbrowser=True,share=args.share)