File size: 1,495 Bytes
853a4c5
 
 
f99c3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
853a4c5
8556407
 
853a4c5
8556407
6d3242d
f99c3a8
853a4c5
 
 
 
 
f99c3a8
853a4c5
 
f99c3a8
 
853a4c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from transformers import pipeline

def merge_tokens(tokens):
    merged_tokens = []
    for token in tokens:
        if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
            # If current token continues the entity of the last one, merge them
            last_token = merged_tokens[-1]
            last_token['word'] += token['word'].replace('##', '')
            last_token['end'] = token['end']
            last_token['score'] = (last_token['score'] + token['score']) / 2
        else:
            # Otherwise, add the token to the list
            merged_tokens.append(token)

    return merged_tokens

get_completion = pipeline("ner", model="dslim/bert-base-NER")

def ner(input):
    output = get_completion(input)
    merged_tokens = merge_tokens(output)
    return {"text": input, "entities": merged_tokens}

gr.close_all()
demo = gr.Interface(fn=ner,
                    inputs=[gr.Textbox(label="Text to find entities", lines=2)],
                    outputs=[gr.HighlightedText(label="Text with entities")],
                    title="NER with dslim/bert-base-NER",
                    description="Find entities using the `dslim/bert-base-NER` model under the hood!",
                    allow_flagging="never",
                    examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])

demo.launch()