Spaces:
Running
on
Zero
Running
on
Zero
File size: 862 Bytes
853a4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import gradio as gr
from transformers import pipeline
get_completion = pipeline("ner", model="dslim/bert-base-NER")
def ner(input):
output = get_completion(input)
return {"text": input, "entities": output}
gr.close_all()
demo = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
outputs=[gr.HighlightedText(label="Text with entities")],
title="Named Entity Recognition - NER ",
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
allow_flagging="never",
#Here we introduce a new tag, examples, easy to use examples for your application
examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
demo.launch() |