File size: 862 Bytes
853a4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
from transformers import pipeline

get_completion = pipeline("ner", model="dslim/bert-base-NER")

def ner(input):
    output = get_completion(input)
    return {"text": input, "entities": output}

gr.close_all()
demo = gr.Interface(fn=ner,
                    inputs=[gr.Textbox(label="Text to find entities", lines=2)],
                    outputs=[gr.HighlightedText(label="Text with entities")],
                    title="Named Entity Recognition - NER ",
                    description="Find entities using the `dslim/bert-base-NER` model under the hood!",
                    allow_flagging="never",
                    #Here we introduce a new tag, examples, easy to use examples for your application
                    examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
demo.launch()