|
""" |
|
Split the dataset into training and test set. |
|
|
|
Usage: python3 -m fastchat.data.split_train_test --in sharegpt.json |
|
""" |
|
import argparse |
|
import json |
|
|
|
import numpy as np |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--in-file", type=str, required=True) |
|
parser.add_argument("--begin", type=int, default=0) |
|
parser.add_argument("--end", type=int, default=100) |
|
parser.add_argument("--ratio", type=float, default=0.9) |
|
args = parser.parse_args() |
|
|
|
content = json.load(open(args.in_file, "r")) |
|
np.random.seed(0) |
|
|
|
perm = np.random.permutation(len(content)) |
|
content = [content[i] for i in perm] |
|
split = int(args.ratio * len(content)) |
|
|
|
train_set = content[:split] |
|
test_set = content[split:] |
|
|
|
print(f"#train: {len(train_set)}, #test: {len(test_set)}") |
|
train_name = args.in_file.replace(".json", "_train.json") |
|
test_name = args.in_file.replace(".json", "_test.json") |
|
json.dump(train_set, open(train_name, "w"), indent=2, ensure_ascii=False) |
|
json.dump(test_set, open(test_name, "w"), indent=2, ensure_ascii=False) |
|
|