|
""" |
|
Apply the delta weights on top of a base model. |
|
|
|
Usage: |
|
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta-v1.1 |
|
""" |
|
import argparse |
|
import gc |
|
import glob |
|
import json |
|
import os |
|
import shutil |
|
import tempfile |
|
|
|
from huggingface_hub import snapshot_download |
|
import torch |
|
from torch import nn |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig |
|
|
|
|
|
GB = 1 << 30 |
|
|
|
|
|
def split_files(model_path, tmp_path, split_size): |
|
if not os.path.exists(model_path): |
|
model_path = snapshot_download(repo_id=model_path) |
|
if not os.path.exists(tmp_path): |
|
os.makedirs(tmp_path) |
|
|
|
file_pattern = os.path.join(model_path, "pytorch_model-*.bin") |
|
files = glob.glob(file_pattern) |
|
|
|
part = 0 |
|
try: |
|
for file_path in tqdm(files): |
|
state_dict = torch.load(file_path) |
|
new_state_dict = {} |
|
|
|
current_size = 0 |
|
for name, param in state_dict.items(): |
|
param_size = param.numel() * param.element_size() |
|
|
|
if current_size + param_size > split_size: |
|
new_file_name = f"pytorch_model-{part}.bin" |
|
new_file_path = os.path.join(tmp_path, new_file_name) |
|
torch.save(new_state_dict, new_file_path) |
|
current_size = 0 |
|
new_state_dict = None |
|
gc.collect() |
|
new_state_dict = {} |
|
part += 1 |
|
|
|
new_state_dict[name] = param |
|
current_size += param_size |
|
|
|
new_file_name = f"pytorch_model-{part}.bin" |
|
new_file_path = os.path.join(tmp_path, new_file_name) |
|
torch.save(new_state_dict, new_file_path) |
|
new_state_dict = None |
|
gc.collect() |
|
new_state_dict = {} |
|
part += 1 |
|
except Exception as e: |
|
print(f"An error occurred during split_files: {e}") |
|
shutil.rmtree(tmp_path) |
|
raise |
|
|
|
|
|
def apply_delta_low_cpu_mem(base_model_path, target_model_path, delta_path): |
|
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) |
|
delta_config = AutoConfig.from_pretrained(delta_path) |
|
|
|
if os.path.exists(target_model_path): |
|
shutil.rmtree(target_model_path) |
|
os.makedirs(target_model_path) |
|
|
|
split_size = 4 * GB |
|
|
|
with tempfile.TemporaryDirectory() as tmp_base_path, tempfile.TemporaryDirectory() as tmp_delta_path: |
|
print(f"Split files for the base model to {tmp_base_path}") |
|
split_files(base_model_path, tmp_base_path, split_size) |
|
print(f"Split files for the delta weights to {tmp_delta_path}") |
|
split_files(delta_path, tmp_delta_path, split_size) |
|
|
|
base_pattern = os.path.join(tmp_base_path, "pytorch_model-*.bin") |
|
base_files = glob.glob(base_pattern) |
|
delta_pattern = os.path.join(tmp_delta_path, "pytorch_model-*.bin") |
|
delta_files = glob.glob(delta_pattern) |
|
delta_state_dict = torch.load(delta_files[0]) |
|
|
|
print("Applying the delta") |
|
weight_map = {} |
|
total_size = 0 |
|
|
|
for i, base_file in tqdm(enumerate(base_files)): |
|
state_dict = torch.load(base_file) |
|
file_name = f"pytorch_model-{i}.bin" |
|
for name, param in state_dict.items(): |
|
if name not in delta_state_dict: |
|
for delta_file in delta_files: |
|
delta_state_dict = torch.load(delta_file) |
|
gc.collect() |
|
if name in delta_state_dict: |
|
break |
|
|
|
state_dict[name] += delta_state_dict[name] |
|
weight_map[name] = file_name |
|
total_size += param.numel() * param.element_size() |
|
gc.collect() |
|
torch.save(state_dict, os.path.join(target_model_path, file_name)) |
|
|
|
with open( |
|
os.path.join(target_model_path, "pytorch_model.bin.index.json"), "w" |
|
) as f: |
|
json.dump( |
|
{"weight_map": weight_map, "metadata": {"total_size": total_size}}, f |
|
) |
|
|
|
print(f"Saving the target model to {target_model_path}") |
|
delta_tokenizer.save_pretrained(target_model_path) |
|
delta_config.save_pretrained(target_model_path) |
|
|
|
|
|
def apply_delta(base_model_path, target_model_path, delta_path): |
|
print(f"Loading the delta weights from {delta_path}") |
|
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) |
|
delta = AutoModelForCausalLM.from_pretrained( |
|
delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
) |
|
|
|
print(f"Loading the base model from {base_model_path}") |
|
base = AutoModelForCausalLM.from_pretrained( |
|
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
) |
|
|
|
print("Applying the delta") |
|
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"): |
|
assert name in delta.state_dict() |
|
param.data += delta.state_dict()[name] |
|
|
|
print(f"Saving the target model to {target_model_path}") |
|
base.save_pretrained(target_model_path) |
|
delta_tokenizer.save_pretrained(target_model_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--base-model-path", type=str, required=True) |
|
parser.add_argument("--target-model-path", type=str, required=True) |
|
parser.add_argument("--delta-path", type=str, required=True) |
|
parser.add_argument( |
|
"--low-cpu-mem", |
|
action="store_true", |
|
help="Lower the cpu memory usage. This will split large files and use " |
|
"disk as swap to reduce the memory usage below 10GB.", |
|
) |
|
args = parser.parse_args() |
|
|
|
if args.low_cpu_mem: |
|
apply_delta_low_cpu_mem( |
|
args.base_model_path, args.target_model_path, args.delta_path |
|
) |
|
else: |
|
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) |
|
|