|
""" |
|
Make the delta weights by subtracting base weights. |
|
|
|
Usage: |
|
python3 -m fastchat.model.make_delta --base ~/model_weights/llama-13b --target ~/model_weights/vicuna-13b --delta ~/model_weights/vicuna-13b-delta --hub-repo-id lmsys/vicuna-13b-delta-v1.1 |
|
""" |
|
import argparse |
|
|
|
import torch |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
def make_delta(base_model_path, target_model_path, delta_path): |
|
print(f"Loading the base model from {base_model_path}") |
|
base = AutoModelForCausalLM.from_pretrained( |
|
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
) |
|
|
|
print(f"Loading the target model from {target_model_path}") |
|
target = AutoModelForCausalLM.from_pretrained( |
|
target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
) |
|
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path, use_fast=False) |
|
|
|
print("Calculating the delta") |
|
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"): |
|
assert name in base.state_dict() |
|
param.data -= base.state_dict()[name] |
|
|
|
print(f"Saving the delta to {delta_path}") |
|
if args.hub_repo_id: |
|
kwargs = {"push_to_hub": True, "repo_id": args.hub_repo_id} |
|
else: |
|
kwargs = {} |
|
target.save_pretrained(delta_path, **kwargs) |
|
target_tokenizer.save_pretrained(delta_path, **kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--base-model-path", type=str, required=True) |
|
parser.add_argument("--target-model-path", type=str, required=True) |
|
parser.add_argument("--delta-path", type=str, required=True) |
|
parser.add_argument("--hub-repo-id", type=str) |
|
args = parser.parse_args() |
|
|
|
make_delta(args.base_model_path, args.target_model_path, args.delta_path) |
|
|