import gradio as gr import random import time from ctransformers import AutoModelForCausalLM import datetime import os params = { "max_new_tokens":512, "stop":["" ,"<|endoftext|>"], "temperature":0.7, "top_p":0.8, "stream":True, "batch_size": 8} def save_log(task, to_save): with open("logs.txt", "a") as log_file: current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") log_file.write(f"[{current_time}] - {task}: {to_save}\n") print(to_save) llm = AutoModelForCausalLM.from_pretrained("Aspik101/Llama-2-7b-chat-hf-pl-lora_GGML", model_type="llama") with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, None]] def parse_history(hist): history_ = "" for q, a in hist: history_ += f": {q } \n" if a: history_ += f": {a} \n" return history_ def bot(history): print("history: ",history) prompt = f"JesteÅ› AI assystentem. Odpowiadaj po polsku. {parse_history(history)}. :" print("prompt: ",prompt) stream = llm(prompt, **params) history[-1][1] = "" answer_save = "" for character in stream: history[-1][1] += character answer_save += character time.sleep(0.005) yield history print("answer_save: ",answer_save) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch()