Spaces:
Runtime error
Runtime error
import os | |
import platform | |
import sys | |
import time | |
import boto3 | |
from botocore.exceptions import NoCredentialsError | |
import logging | |
import gradio as gr | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
os.environ["TOKENIZERS_PARALLELISM"] = "0" | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
# device = "cuda" | |
# has_gpu = torch.cuda.is_available() | |
# device = "cuda" if has_gpu else "cpu" | |
# print(f"Python Platform: {platform.platform()}") | |
# print(f"Python Version: {sys.version}") | |
# print(f"PyTorch Version: {torch.__version__}") | |
# print("GPU Availability:", "Available" if has_gpu else "Not Available") | |
# print(f"Target Device: {device}") | |
# if has_gpu: | |
# print(f"GPU Type: {torch.cuda.get_device_name(0)}") | |
# print(f"CUDA Version: {torch.version.cuda}") | |
# else: | |
# print("CUDA is not available.") | |
def download_xmad_file(): | |
s3 = boto3.client('s3', | |
aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), | |
aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY')) | |
# Create the .codebooks directory if it doesn't exist | |
codebooks_dir = '.codebooks' | |
os.makedirs(codebooks_dir, exist_ok=True) | |
temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad') | |
try: | |
# Download the file to the .codebooks directory | |
s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path) | |
print("Download Successful") | |
# Restrict permissions on the .codebooks directory | |
os.chmod(codebooks_dir, 0o700) | |
except NoCredentialsError: | |
print("Credentials not available") | |
download_xmad_file() | |
def get_gpu_memory(): | |
return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB | |
class TorchTracemalloc: | |
def __init__(self): | |
self.begin = 0 | |
self.peak = 0 | |
def __enter__(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_peak_memory_stats() | |
torch.cuda.synchronize() | |
self.begin = get_gpu_memory() | |
return self | |
def __exit__(self, *exc): | |
torch.cuda.synchronize() | |
self.peak = torch.cuda.max_memory_allocated() / 1024 / 1024 | |
def consumed(self): | |
return self.peak - self.begin | |
def load_model_and_tokenizer(): | |
model_name = "NousResearch/Meta-Llama-3-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
special_tokens = {"pad_token": "<PAD>"} | |
tokenizer.add_special_tokens(special_tokens) | |
config = AutoConfig.from_pretrained(model_name) | |
setattr( | |
config, "quantizer_path", ".codebooks/llama-3-8b-instruct_1bit.xmad" | |
) | |
setattr(config, "window_length", 32) | |
# model = AutoModelForCausalLM.from_pretrained( | |
# model_name, config=config, torch_dtype=torch.float16 | |
# ).to(device) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, config=config, torch_dtype=torch.float16, device_map="auto" | |
) | |
print(f"Quantizer path in model config: {model.config.quantizer_path}") | |
logging.info(f"Quantizer path in model config: {model.config.quantizer_path}") | |
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: | |
print( | |
"WARNING: Resizing the embedding matrix to match the tokenizer vocab size." | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
tokenizer.padding_side = "left" | |
model.config.pad_token_id = tokenizer.pad_token_id | |
return model, tokenizer | |
model, tokenizer = load_model_and_tokenizer() | |
def process_dialog(message, history): | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
] | |
dialog = [ | |
{"role": "user" if i % 2 == 0 else "assistant", "content": msg} | |
for i, (msg, _) in enumerate(history) | |
] | |
dialog.append({"role": "user", "content": message}) | |
prompt = tokenizer.apply_chat_template( | |
dialog, tokenize=False, add_generation_prompt=True | |
) | |
tokenized_input_prompt_ids = tokenizer( | |
prompt, return_tensors="pt" | |
).input_ids.to(model.device) | |
start_time = time.time() | |
with TorchTracemalloc() as tracemalloc: | |
with torch.no_grad(): | |
output = model.generate( | |
tokenized_input_prompt_ids, | |
# max_new_tokens=512, | |
temperature=0.4, | |
do_sample=True, | |
eos_token_id=terminators, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
end_time = time.time() | |
response = output[0][tokenized_input_prompt_ids.shape[-1] :] | |
cleaned_response = tokenizer.decode( | |
response, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
generation_time = end_time - start_time | |
gpu_memory = tracemalloc.consumed() | |
return cleaned_response, generation_time, gpu_memory | |
def chatbot_response(message, history): | |
response, generation_time, gpu_memory = process_dialog(message, history) | |
metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*GPU Memory Consumption:* `{gpu_memory:.2f} MiB`\n\n" | |
return response + metrics | |
demo = gr.ChatInterface( | |
fn=chatbot_response, | |
examples=["Hello", "How are you?", "Tell me a joke"], | |
title="Chat with xMAD's: 1-bit-Llama-3-8B-Instruct Model", | |
description="Contact [email protected] to set up a demo", | |
) | |
if __name__ == "__main__": | |
username = os.getenv("AUTH_USERNAME") | |
password = os.getenv("AUTH_PASSWORD") | |
demo.launch(auth=(username, password)) | |
# demo.launch() | |