|
import os, sys |
|
sys.path.insert(0, os.getcwd()) |
|
import argparse |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"base_model", help="The model which use it to train the dreambooth model", |
|
default='', type=str |
|
) |
|
parser.add_argument( |
|
"db_model", help="the dreambooth model you want to extract the locon", |
|
default='', type=str |
|
) |
|
parser.add_argument( |
|
"output_name", help="the output model", |
|
default='./out.pt', type=str |
|
) |
|
parser.add_argument( |
|
"--is_v2", help="Your base/db model is sd v2 or not", |
|
default=False, action="store_true" |
|
) |
|
parser.add_argument( |
|
"--device", help="Which device you want to use to extract the locon", |
|
default='cpu', type=str |
|
) |
|
parser.add_argument( |
|
"--mode", |
|
help=( |
|
'extraction mode, can be "fixed", "threshold", "ratio", "quantile". ' |
|
'If not "fixed", network_dim and conv_dim will be ignored' |
|
), |
|
default='fixed', type=str |
|
) |
|
parser.add_argument( |
|
"--safetensors", help='use safetensors to save locon model', |
|
default=False, action="store_true" |
|
) |
|
parser.add_argument( |
|
"--linear_dim", help="network dim for linear layer in fixed mode", |
|
default=1, type=int |
|
) |
|
parser.add_argument( |
|
"--conv_dim", help="network dim for conv layer in fixed mode", |
|
default=1, type=int |
|
) |
|
parser.add_argument( |
|
"--linear_threshold", help="singular value threshold for linear layer in threshold mode", |
|
default=0., type=float |
|
) |
|
parser.add_argument( |
|
"--conv_threshold", help="singular value threshold for conv layer in threshold mode", |
|
default=0., type=float |
|
) |
|
parser.add_argument( |
|
"--linear_ratio", help="singular ratio for linear layer in ratio mode", |
|
default=0., type=float |
|
) |
|
parser.add_argument( |
|
"--conv_ratio", help="singular ratio for conv layer in ratio mode", |
|
default=0., type=float |
|
) |
|
parser.add_argument( |
|
"--linear_quantile", help="singular value quantile for linear layer quantile mode", |
|
default=1., type=float |
|
) |
|
parser.add_argument( |
|
"--conv_quantile", help="singular value quantile for conv layer quantile mode", |
|
default=1., type=float |
|
) |
|
parser.add_argument( |
|
"--use_sparse_bias", help="enable sparse bias", |
|
default=False, action="store_true" |
|
) |
|
parser.add_argument( |
|
"--sparsity", help="sparsity for sparse bias", |
|
default=0.98, type=float |
|
) |
|
parser.add_argument( |
|
"--disable_cp", help="don't use cp decomposition", |
|
default=False, action="store_true" |
|
) |
|
return parser.parse_args() |
|
ARGS = get_args() |
|
|
|
|
|
from lycoris.utils import extract_diff |
|
from lycoris.kohya_model_utils import load_models_from_stable_diffusion_checkpoint |
|
|
|
import torch |
|
from safetensors.torch import save_file |
|
|
|
|
|
def main(): |
|
args = ARGS |
|
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) |
|
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) |
|
|
|
linear_mode_param = { |
|
'fixed': args.linear_dim, |
|
'threshold': args.linear_threshold, |
|
'ratio': args.linear_ratio, |
|
'quantile': args.linear_quantile, |
|
}[args.mode] |
|
conv_mode_param = { |
|
'fixed': args.conv_dim, |
|
'threshold': args.conv_threshold, |
|
'ratio': args.conv_ratio, |
|
'quantile': args.conv_quantile, |
|
}[args.mode] |
|
|
|
state_dict = extract_diff( |
|
base, db, |
|
args.mode, |
|
linear_mode_param, conv_mode_param, |
|
args.device, |
|
args.use_sparse_bias, args.sparsity, |
|
not args.disable_cp |
|
) |
|
|
|
if args.safetensors: |
|
save_file(state_dict, args.output_name) |
|
else: |
|
torch.save(state_dict, args.output_name) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |