File size: 7,942 Bytes
cd33ba8 7370511 cd33ba8 7a56ff8 cd33ba8 7370511 cd33ba8 7370511 cd33ba8 f80f102 cd33ba8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
from faster_whisper import WhisperModel
from pydantic import BaseModel, Field, AliasChoices, field_validator, ValidationError
from typing import List
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import csv
import json
import tempfile
import torch
import os
# Set environment variables for gradio
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
# Initiate checkpoints for model loading
numind_checkpoint = "numind/NuExtract-tiny"
llama_checkpoint = "Atereoyin/Llama3_finetuned_for_medical_entity_extraction"
whisper_checkpoint = "base"
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
# Load models with the correct device
whisper_model = WhisperModel(whisper_checkpoint, device="cuda")
numind_model = AutoModelForCausalLM.from_pretrained(numind_checkpoint, quantization_config=quantization_config, torch_dtype=torch.float16, trust_remote_code=True)
numind_tokenizer = AutoTokenizer.from_pretrained(numind_checkpoint)
llama_model = AutoModelForCausalLM.from_pretrained(llama_checkpoint, quantization_config=quantization_config, trust_remote_code=True)
llama_tokenizer = AutoTokenizer.from_pretrained(llama_checkpoint)
# Function to transcribe audio
def transcribe_audio(audio_file_path):
try:
segments, info = whisper_model.transcribe(audio_file_path, beam_size=5)
text = "".join([segment.text for segment in segments])
return text
except Exception as e:
return str(e)
# Functions for Person entity extraction
def predict_NuExtract(model, tokenizer, text, schema, example=["","",""]):
schema = json.dumps(json.loads(schema), indent=4)
input_llm = "<|input|>\n### Template:\n" + schema + "\n"
for i in example:
if i != "":
input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
input_llm += "### Text:\n"+text +"\n<|output|>\n"
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=4000).to("cuda")
output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
return output.split("<|output|>")[1].split("<|end-output|>")[0]
#Function for generating promtps for Llama
def prompt_format(text):
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
instruction = """Extract the following entities from the medical conversation:
* **Symptoms:** List all the symptoms the patient mentions.
* **Diagnosis:** List the doctor's diagnosis or potential diagnoses.
* **Medical History:** Summarize the patient's relevant medical history.
* **Action Plan:** List the recommended actions or treatment plan.
Provide the result in the following JSON format:
{
"Symptoms": [...],
"Diagnosis": [...],
"Medical history": [...],
"Action plan": [...]
}"""
full_prompt = prompt.format(instruction, text, "")
return full_prompt
#Pydantic Validator to validate Llama's response
def validate_medical_record(response):
class MedicalRecord(BaseModel):
Symptoms: List[str] = Field(default_factory=list)
Diagnosis: List[str] = Field(default_factory=list)
Medical_history: List[str] = Field(
default_factory=list,
validation_alias=AliasChoices('Medical history', 'History of Patient')
)
Action_plan: List[str] = Field(
default_factory=list,
validation_alias=AliasChoices('Action plan', 'Plan of Action')
)
@field_validator('*', mode='before')
def ensure_list(cls, v):
if isinstance(v, str):
return [item.strip() for item in v.split(',')]
return v
try:
validated_data = MedicalRecord(**response)
return validated_data.dict()
except ValidationError as e:
return response
# Function to predict medical entities using Llama
def predict_Llama(model, tokenizer, text):
inputs = tokenizer(prompt_format(text), return_tensors="pt", truncation=True).to("cuda")
try:
outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.2, use_cache=True)
extracted_entities = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = extracted_entities.split("### Response:", 1)[-1].strip()
response_dict = {k.strip(): v.strip() for k, v in (line.split(': ', 1) for line in response.splitlines() if ': ' in line)}
validated_response = validate_medical_record(response_dict)
return validated_response
except Exception as e:
print(f"Error during Llama prediction: {str(e)}")
return {}
#Control function that cordinates communication of other functions to map entities to form fields
def process_audio(audio):
if isinstance(audio, str):
with open(audio, 'rb') as f:
audio_bytes = f.read()
else:
audio_bytes = audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_bytes)
temp_audio.flush()
audio_path = temp_audio.name
transcription = transcribe_audio(audio_path)
person_schema = """{"Name": "","Age": "","Gender": ""}"""
person_entities_raw = predict_NuExtract(numind_model, numind_tokenizer, transcription, person_schema)
try:
person_entities = json.loads(person_entities_raw)
except json.JSONDecodeError as e:
return f"Error in NuExtract response: {str(e)}"
medical_entities = predict_Llama(llama_model, llama_tokenizer, transcription)
return (
person_entities.get("Name", ""),
person_entities.get("Age", ""),
person_entities.get("Gender", ""),
", ".join(medical_entities.get("Symptoms", [])),
", ".join(medical_entities.get("Diagnosis", [])),
", ".join(medical_entities.get("Medical_history", [])),
", ".join(medical_entities.get("Action_plan", []))
)
#Function that allows users to download information
def download_csv(name, age, gender, symptoms, diagnosis, medical_history, action_plan):
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
with open(csv_file.name, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Name", "Age", "Gender", "Symptoms", "Diagnosis", "Medical History", "Plan of Action"])
writer.writerow([name, age, gender, symptoms, diagnosis, medical_history, action_plan])
return csv_file.name
# Gradio interface to create a web-based form for users to input audio and fill the medical diagnostic form
demo = gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(type="filepath")
],
outputs=[
gr.Textbox(label="Name"),
gr.Textbox(label="Age"),
gr.Textbox(label="Gender"),
gr.Textbox(label="Symptoms"),
gr.Textbox(label="Diagnosis"),
gr.Textbox(label="Medical History"),
gr.Textbox(label="Plan of Action"),
],
title="Medical Diagnostic Form Assistant",
description="Upload an audio file or record audio to generate a medical diagnostic form."
)
with demo:
download_button = gr.Button("Download CSV")
download_button.click(
fn=lambda name, age, gender, symptoms, diagnosis, medical_history, action_plan: download_csv(name, age, gender, symptoms, diagnosis, medical_history, action_plan),
inputs=demo.output_components,
outputs=gr.File(label="Download CSV")
)
demo.launch()
|