import gradio as gr import re, datetime,time, cv2, numpy as np, tensorflow as tf, sys CHARS = "ABCDEFGHIJKLMNPQRSTUVWXYZ0123456789" # exclude I, O CHARS_DICT = {char:i for i, char in enumerate(CHARS)} DECODE_DICT = {i:char for i, char in enumerate(CHARS)} interpreter = tf.lite.Interpreter(model_path='detection.tflite') #interpreter = tf.lite.Interpreter(model_path='lite-model_east-text-detector_fp16_1.tflite') interpreter.allocate_tensors() recog_interpreter = tf.lite.Interpreter(model_path='recognition.tflite') recog_input_details = recog_interpreter.get_input_details() recog_output_details = recog_interpreter.get_output_details() recog_interpreter.resize_tensor_input(recog_input_details[0]['index'], (1, 24, 94, 3)) recog_interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0): """Return a sharpened version of the image, using an unsharp mask.""" blurred = cv2.GaussianBlur(image, kernel_size, sigma) sharpened = float(amount + 1) * image - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(image - blurred) < threshold np.copyto(sharpened, image, where=low_contrast_mask) return sharpened def convdigplate(text) : dict = {'0':'O','1':'I','2':'S','3':'E','4':'A','5':'S','6':'B','7':'T','8':'B','9':'B'} dictL = {'A':'4','B':'8','C':'0','D':'0','E':'3','F':'3','G':'6','H':'4','I':'1', 'J':'6','K':'4','L':'1','M':'4','N':'4','O':'0','P':'8','Q':'0','R':'8', 'S':'2','T':'1','U':'0','V':'4','X':'4','Y':'9','W':'3','Z':'2'} if len(text) > 7: if len(text) >= 9: text = text[1:8] else : if text[3].isdigit() : text = text[:7] else : text = text[1:] temp = list(text) for index in range(len(temp)): if index <3: if text[index].isdigit(): temp[index] = dict[temp[index]] else : if not text[index].isdigit() and index != 4: temp[index] = dictL[temp[index]] text = "".join(temp) return text def increase_brightness(img, value): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) lim = 255 - value v[v > lim] = 255 v[v <= lim] += value final_hsv = cv2.merge((h, s, v)) img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR) return img def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details): x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2] save_frame = frame[ max( 0, int(y1*1079) ) : min( 1079, int(y2*1079) ), max( 0, int(x1*1920) ) : min( 1920, int(x2*1920) ) ] # Execute text recognition print(frame.shape) test_image = cv2.resize(save_frame,(94,24))/256 test_image = np.expand_dims(test_image,axis=0) test_image = test_image.astype(np.float32) interpreter.set_tensor(input_details[0]['index'], test_image) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) decoded = tf.keras.backend.ctc_decode(output_data,(24,),greedy=True) text = "" for i in np.array(decoded[0][0][0]): if i >-1: text += DECODE_DICT[i] # Do nothing if text is empty if not len(text): return license_plate = text text[:3].replace("0",'O') textc = convdigplate(text) text = textc+" ( "+text+" ) " return text,cv2.resize(save_frame,(94,24)) def greet(image): #sharpened = unsharp_mask(image) #image = increase_brightness(sharpened, value=10) # 60 ->5qoOk.png #10 -> if8nC.png image = cv2.resize(image, (720,480), interpolation=cv2.INTER_LINEAR) norm_img = np.zeros((image.shape[0], image.shape[1])) image = cv2.normalize(image, norm_img, 0, 255, cv2.NORM_MINMAX) resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_LINEAR) input_data = resized.astype(np.float32) # Set as 3D RGB float array input_data /= 255. # Normalize input_data = np.expand_dims(input_data, axis=0) # Batch dimension (wrap in 4D) # Initialize input tensor interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) # Bounding boxes boxes = interpreter.get_tensor(output_details[1]['index']) text = None # For index and confidence value of the first class [0] for i, confidence in enumerate(output_data[0]): if confidence > .3: text, crop = execute_text_recognition_tflite( boxes[0][i], image, recog_interpreter, recog_input_details, recog_output_details, ) return text, crop image = gr.inputs.Image(shape=(1920,1080)) output_image =gr.outputs.Image(type="auto", label="Output") title = "Automatic licence plate detection and recognition" description = "Gradio demo for an automatic licence plate recognition system. To use it, simply upload your image of a car with a licence plate, or click one of the examples to load them. Read more at the links below." article = "

Robust Real time Lightweight Automatic License plate Recognition System for Iranian License Plates | Github Repo

" iface = gr.Interface( fn=greet, inputs=image, outputs=["text",output_image], title = title, description = description, article=article, examples = [ "3.jpg", "4.jpg", ] ) iface.launch()