Spaces:
Sleeping
Sleeping
import os | |
import json | |
import numpy as np | |
import torch | |
import torchaudio | |
torchaudio.set_audio_backend("soundfile") # Use 'soundfile' backend | |
from encodec import EncodecModel | |
from encodec.utils import convert_audio | |
from .hubert_manager import HuBERTManager | |
from .pre_kmeans_hubert import CustomHubert | |
from .customtokenizer import CustomTokenizer | |
class VoiceParser(): | |
def __init__(self, device='cpu'): | |
model = ('quantifier_hubert_base_ls960_14.pth', 'tokenizer.pth') | |
hubert_model = CustomHubert(HuBERTManager.make_sure_hubert_installed(), device=device) | |
quant_model = CustomTokenizer.load_from_checkpoint(HuBERTManager.make_sure_tokenizer_installed(model=model[0], local_file=model[1]), device) | |
encodec_model = EncodecModel.encodec_model_24khz() | |
encodec_model.set_target_bandwidth(6.0) | |
self.hubert_model = hubert_model | |
self.quant_model = quant_model | |
self.encodec_model = encodec_model.to(device) | |
self.device = device | |
print('Loaded VoiceParser models!') | |
def extract_acoustic_embed(self, wav_path, npz_dir): | |
wav, sr = torchaudio.load(wav_path) | |
wav_hubert = wav.to(self.device) | |
if wav_hubert.shape[0] == 2: # Stereo to mono if needed | |
wav_hubert = wav_hubert.mean(0, keepdim=True) | |
semantic_vectors = self.hubert_model.forward(wav_hubert, input_sample_hz=sr) | |
semantic_tokens = self.quant_model.get_token(semantic_vectors) | |
wav = convert_audio(wav, sr, self.encodec_model.sample_rate, 1).unsqueeze(0) | |
wav = wav.to(self.device) | |
with torch.no_grad(): | |
encoded_frames = self.encodec_model.encode(wav) | |
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() | |
codes = codes.cpu() | |
semantic_tokens = semantic_tokens.cpu() | |
wav_name = os.path.split(wav_path)[1] | |
npz_name = wav_name[:-4] + '.npz' | |
npz_path = os.path.join(npz_dir, npz_name) | |
np.savez( | |
npz_path, | |
semantic_prompt=semantic_tokens, | |
fine_prompt=codes, | |
coarse_prompt=codes[:2, :] | |
) | |
return npz_path | |
def read_json_file(self, json_path): | |
with open(json_path, 'r') as file: | |
data = json.load(file) | |
return data | |
def parse_voice_json(self, voice_json, output_dir): | |
""" | |
Parse a voice json file, generate the corresponding output json and npz files | |
Params: | |
voice_json: path of a json file or List of json nodes | |
output_dir: output dir for new json and npz files | |
""" | |
if isinstance(voice_json, list): | |
voice_json = voice_json | |
else: | |
# If voice_json is a file path (str), read the JSON file | |
voice_json = self.read_json_file(voice_json) | |
for item in voice_json: | |
wav_path = item['wav'] | |
npz_path = self.extract_acoustic_embed(wav_path=wav_path, npz_dir=output_dir) | |
item['npz'] = npz_path | |
del item['wav'] | |
output_json = os.path.join(output_dir, 'metadata.json') | |
with open(output_json, 'w') as file: | |
json.dump(voice_json, file, indent=4) | |