File size: 3,416 Bytes
c3a1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import sys

from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger

sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
from centernet.config import add_centernet_config
from grit.config import add_grit_config

from grit.predictor import VisualizationDemo
import json


# constants
WINDOW_NAME = "GRiT"


def dense_pred_to_caption(predictions):
    boxes = predictions["instances"].pred_boxes if predictions["instances"].has("pred_boxes") else None
    object_description = predictions["instances"].pred_object_descriptions.data
    new_caption = ""
    for i in range(len(object_description)):
        new_caption += (object_description[i] + ": " + str([int(a) for a in boxes[i].tensor.cpu().detach().numpy()[0]])) + "; "
    return new_caption

def setup_cfg(args):
    cfg = get_cfg()
    if args.cpu:
        cfg.MODEL.DEVICE="cpu"
    add_centernet_config(cfg)
    add_grit_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    # Set score_threshold for builtin models
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
    cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
    if args.test_task:
        cfg.MODEL.TEST_TASK = args.test_task
    cfg.MODEL.BEAM_SIZE = 1
    cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False
    cfg.USE_ACT_CHECKPOINT = False
    cfg.freeze()
    return cfg


def get_parser():
    parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs")
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--cpu", action='store_true', help="Use CPU only.")
    parser.add_argument(
        "--image_src",
        default="../examples/1.jpg",
        help="Input json file include 'image' and 'caption'; "
    )
    # "/home/aiops/wangjp/Code/LLP/annotation/coco_karpathy_test_dense_caption.json", "/home/aiops/wangjp/Code/LLP/annotation/coco_karpathy_train_dense_caption.json"
    parser.add_argument(
        "--confidence-threshold",
        type=float,
        default=0.5,
        help="Minimum score for instance predictions to be shown",
    )
    parser.add_argument(
        "--test-task",
        type=str,
        default='',
        help="Choose a task to have GRiT perform",
    )
    parser.add_argument(
        "--opts",
        help="Modify config options using the command-line 'KEY VALUE' pairs",
        default=[],
        nargs=argparse.REMAINDER,
    )
    return parser


if __name__ == "__main__":
    mp.set_start_method("spawn", force=True)
    args = get_parser().parse_args()
    setup_logger(name="fvcore")
    logger = setup_logger()
    logger.info("Arguments: " + str(args))

    cfg = setup_cfg(args)
    demo = VisualizationDemo(cfg)
    if args.image_src:
        img = read_image(args.image_src, format="BGR")
        start_time = time.time()
        predictions, visualized_output = demo.run_on_image(img)
        new_caption = dense_pred_to_caption(predictions)
    print(new_caption)

    output_file = os.path.expanduser("~/grit_output.txt")
    with open(output_file, 'w') as f:
        f.write(new_caption)
    # sys.exit(new_caption)