Spaces:
Runtime error
Runtime error
File size: 6,535 Bytes
353fa54 c3a1897 eb902b3 b25eb4e eb902b3 d756d59 44a0c32 eb902b3 730f1cb eb902b3 9b4b3ea eb902b3 353fa54 c3a1897 353fa54 c3a1897 09db30b b25eb4e 44a0c32 c3a1897 44a0c32 c3a1897 44a0c32 c3a1897 44a0c32 7712f1b 44a0c32 c3a1897 44a0c32 c3a1897 eb902b3 c3a1897 b25eb4e 44a0c32 c3a1897 647ce12 c3a1897 647ce12 c3a1897 80f89b9 8381241 80f89b9 c3a1897 40adb4f eb902b3 b25eb4e eb902b3 c3a1897 8381241 647ce12 5d6f4ba 8381241 aa70b60 455b8f2 7712f1b c3a1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import base64
from io import BytesIO
from models.image_text_transformation import ImageTextTransformation
import argparse
import torch
parser = argparse.ArgumentParser()
parser.add_argument('--gpt_version', choices=['gpt-3.5-turbo', 'gpt4'], default='gpt-3.5-turbo')
parser.add_argument('--image_caption', action='store_true', dest='image_caption', default=True, help='Set this flag to True if you want to use BLIP2 Image Caption')
parser.add_argument('--dense_caption', action='store_true', dest='dense_caption', default=True, help='Set this flag to True if you want to use Dense Caption')
parser.add_argument('--semantic_segment', action='store_true', dest='semantic_segment', default=True, help='Set this flag to True if you want to use semantic segmentation')
parser.add_argument('--sam_arch', choices=['vit_b', 'vit_l', 'vit_h'], dest='sam_arch', default='vit_b', help='vit_b is the default model (fast but not accurate), vit_l and vit_h are larger models')
parser.add_argument('--captioner_base_model', choices=['blip', 'blip2'], dest='captioner_base_model', default='blip', help='blip2 requires 15G GPU memory, blip requires 6G GPU memory')
parser.add_argument('--region_classify_model', choices=['ssa', 'edit_anything'], dest='region_classify_model', default='edit_anything', help='Select the region classification model: edit anything is ten times faster than ssa, but less accurate.')
parser.add_argument('--image_caption_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended')
parser.add_argument('--dense_caption_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, < 6G GPU is not recommended>')
parser.add_argument('--semantic_segment_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended. Make sue this model and image_caption model on same device.')
parser.add_argument('--contolnet_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, <6G GPU is not recommended>')
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
if device == "cuda":
args.image_caption_device = "cuda"
args.dense_caption_device = "cuda"
args.semantic_segment_device = "cuda"
args.contolnet_device = "cuda"
else:
args.image_caption_device = "cpu"
args.dense_caption_device = "cpu"
args.semantic_segment_device = "cpu"
args.contolnet_device = "cpu"
def pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def add_logo():
with open("examples/logo.png", "rb") as f:
logo_base64 = base64.b64encode(f.read()).decode()
return logo_base64
def process_image(image_src, options=None, processor=None):
print(options)
if options is None:
options = []
processor.args.semantic_segment = "Semantic Segment" in options
image_generation_status = "Image Generation" in options
image_caption, dense_caption, region_semantic, gen_text = processor.image_to_text(image_src)
if image_generation_status:
gen_image = processor.text_to_image(gen_text)
gen_image_str = pil_image_to_base64(gen_image)
# Combine the outputs into a single HTML output
custom_output = f'''
<h2>Image->Text:</h2>
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 1;">
<h3>Image Caption</h3>
<p>{image_caption}</p>
</div>
<div style="flex: 1;">
<h3>Dense Caption</h3>
<p>{dense_caption}</p>
</div>
<div style="flex: 1;">
<h3>Region Semantic</h3>
<p>{region_semantic}</p>
</div>
</div>
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 1;">
<h3>GPT4 Reasoning:</h3>
<p>{gen_text}</p>
</div>
</div>
'''
if image_generation_status:
custom_output += f'''
<h2>Text->Image:</h2>
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 1;">
<h3>Generated Image</h3>
<img src="data:image/jpeg;base64,{gen_image_str}" width="400" style="vertical-align: middle;">
</div>
</div>
'''
return custom_output
processor = ImageTextTransformation(args)
# Create Gradio input and output components
image_input = gr.inputs.Image(type='filepath', label="Input Image")
semantic_segment_checkbox = gr.inputs.Checkbox(label="Semantic Segment", default=False)
image_generation_checkbox = gr.inputs.Checkbox(label="Image Generation", default=False)
extra_title = r'![vistors](https://visitor-badge.glitch.me/badge?page_id=fingerrec.Image2Paragraph)' + '\n' + \
r'[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg)](https://huggingface.co/spaces/Awiny/Image2Paragraph?duplicate=true)' + '\n\n'
logo_base64 = add_logo()
# Create the title with the logo
title_with_logo = \
f'<img src="data:image/jpeg;base64,{logo_base64}" width="400" style="vertical-align: middle;"> Understanding Image with Text'
examples = [
["examples/test_4.jpg"],
]
# Create Gradio interface
interface = gr.Interface(
fn=lambda image, options: process_image(image, options, processor),
inputs=[image_input,
gr.CheckboxGroup(
label="Options",
choices=["Image Generation", "Semantic Segment"],
),
],
outputs=gr.outputs.HTML(),
title=title_with_logo,
examples=examples,
description=extra_title +"""
Image.txt. This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot.
\n Github: https://github.com/showlab/Image2Paragraph
\n Twitter: https://twitter.com/awinyimgprocess/status/1646225454599372800?s=46&t=HvOe9T2n35iFuCHP5aIHpQ
\n For online demo, we use smallest model to speed up. For better result, look for github for using large models.
\n Ttext2image model is controlnet, which used canny edge as reference.
\n To speed up, we generate image with small size 384, run the code local for high-quality sample.
"""
)
# Launch the interface
interface.launch() |