Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import base64 | |
from io import BytesIO | |
from models.image_text_transformation import ImageTextTransformation | |
import argparse | |
import torch | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--gpt_version', choices=['gpt-3.5-turbo', 'gpt4'], default='gpt-3.5-turbo') | |
parser.add_argument('--image_caption', action='store_true', dest='image_caption', default=True, help='Set this flag to True if you want to use BLIP2 Image Caption') | |
parser.add_argument('--dense_caption', action='store_true', dest='dense_caption', default=True, help='Set this flag to True if you want to use Dense Caption') | |
parser.add_argument('--semantic_segment', action='store_true', dest='semantic_segment', default=False, help='Set this flag to True if you want to use semantic segmentation') | |
parser.add_argument('--image_caption_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended') | |
parser.add_argument('--dense_caption_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, < 6G GPU is not recommended>') | |
parser.add_argument('--semantic_segment_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended') | |
parser.add_argument('--contolnet_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, <6G GPU is not recommended>') | |
args = parser.parse_args() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# device = "cpu" | |
if device == "cuda": | |
args.image_caption_device = "cpu" | |
args.dense_caption_device = "cuda" | |
args.semantic_segment_device = "cuda" | |
args.contolnet_device = "cuda" | |
else: | |
args.image_caption_device = "cpu" | |
args.dense_caption_device = "cpu" | |
args.semantic_segment_device = "cpu" | |
args.contolnet_device = "cpu" | |
def pil_image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return img_str | |
def add_logo(): | |
with open("examples/logo.png", "rb") as f: | |
logo_base64 = base64.b64encode(f.read()).decode() | |
return logo_base64 | |
def process_image(image_src, options=None, processor=None): | |
print(options) | |
if options is None: | |
options = [] | |
# processor.args.semantic_segment = "Semantic Segment" in options | |
processor.args.semantic_segment = False | |
image_generation_status = "Image Generation" in options | |
image_caption, dense_caption, region_semantic, gen_text = processor.image_to_text(image_src) | |
if image_generation_status: | |
gen_image = processor.text_to_image(gen_text) | |
gen_image_str = pil_image_to_base64(gen_image) | |
# Combine the outputs into a single HTML output | |
custom_output = f''' | |
<h2>Image->Text:</h2> | |
<div style="display: flex; flex-wrap: wrap;"> | |
<div style="flex: 1;"> | |
<h3>Image Caption</h3> | |
<p>{image_caption}</p> | |
</div> | |
<div style="flex: 1;"> | |
<h3>Dense Caption</h3> | |
<p>{dense_caption}</p> | |
</div> | |
<div style="flex: 1;"> | |
<h3>Region Semantic</h3> | |
<p>{region_semantic}</p> | |
</div> | |
<div style="flex: 1;"> | |
<h3>GPT4 Reasoning:</h3> | |
<p>{gen_text}</p> | |
</div> | |
</div> | |
''' | |
if image_generation_status: | |
custom_output += f''' | |
<h2>Text->Image:</h2> | |
<div style="display: flex; flex-wrap: wrap;"> | |
<div style="flex: 1;"> | |
<h3>Generated Image</h3> | |
<img src="data:image/jpeg;base64,{gen_image_str}" width="400" style="vertical-align: middle;"> | |
</div> | |
</div> | |
''' | |
return custom_output | |
processor = ImageTextTransformation(args) | |
# Create Gradio input and output components | |
image_input = gr.inputs.Image(type='filepath', label="Input Image") | |
# semantic_segment_checkbox = gr.inputs.Checkbox(label="Semantic Segment", default=False) | |
image_generation_checkbox = gr.inputs.Checkbox(label="Image Generation", default=False) | |
logo_base64 = add_logo() | |
# Create the title with the logo | |
title_with_logo = f'<img src="data:image/jpeg;base64,{logo_base64}" width="400" style="vertical-align: middle;"> Understanding Image with Text' | |
examples = [ | |
["examples/test_4.jpg"], | |
] | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=lambda image, options: process_image(image, options, processor), | |
inputs=[image_input, | |
gr.CheckboxGroup( | |
label="Options", | |
choices=["Image Generation"], | |
), | |
], | |
outputs=gr.outputs.HTML(), | |
title=title_with_logo, | |
examples=examples, | |
description=""" | |
This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot. | |
\n Github: https://github.com/showlab/Image2Paragraph | |
\n Twitter: https://twitter.com/awinyimgprocess/status/1646225454599372800?s=46&t=HvOe9T2n35iFuCHP5aIHpQ | |
\n Since GPU is expensive, we use CPU for demo and not include semantic segment anything. Run code local with gpu or google colab we provided for fast speed. | |
\n Ttext2image model is controlnet ( very slow in cpu(~2m)), which used canny edge as reference. | |
\n To speed up, we generate image with small size 256, run the code local for high-quality sample. | |
""" | |
) | |
# Launch the interface | |
interface.launch() |