Image2Paragraph / app.py
Awiny's picture
first version submission
c3a1897
raw
history blame
1.97 kB
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import base64
from io import BytesIO
from models.image_text_transformation import ImageTextTransformation
def pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def add_logo():
with open("examples/logo.png", "rb") as f:
logo_base64 = base64.b64encode(f.read()).decode()
return logo_base64
def process_image(image_src, processor):
gen_text = processor.image_to_text(image_src)
gen_image = processor.text_to_image(gen_text)
gen_image_str = pil_image_to_base64(gen_image)
# Combine the outputs into a single HTML output
custom_output = f'''
<h2>Image->Text->Image:</h2>
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 1;">
<h3>Image2Text</h3>
<p>{gen_text}</p>
</div>
<div style="flex: 1;">
<h3>Text2Image</h3>
<img src="data:image/jpeg;base64,{gen_image_str}" width="100%" />
</div>
</div>
'''
return custom_output
processor = ImageTextTransformation()
# Create Gradio input and output components
image_input = gr.inputs.Image(type='filepath', label="Input Image")
logo_base64 = add_logo()
# Create the title with the logo
title_with_logo = f'<img src="data:image/jpeg;base64,{logo_base64}" width="400" style="vertical-align: middle;"> Understanding Image with Text'
# Create Gradio interface
interface = gr.Interface(
fn=lambda image: process_image(image, processor), # Pass the processor object using a lambda function
inputs=image_input,
outputs=gr.outputs.HTML(),
title=title_with_logo,
description="""
This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot.
"""
)
# Launch the interface
interface.launch()