Spaces:
Runtime error
Runtime error
import argparse | |
import multiprocessing as mp | |
import os | |
import time | |
import cv2 | |
import tqdm | |
import sys | |
from detectron2.config import get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.utils.logger import setup_logger | |
sys.path.insert(0, 'models/grit_src/third_party/CenterNet2/projects/CenterNet2/') | |
from centernet.config import add_centernet_config | |
from models.grit_src.grit.config import add_grit_config | |
from models.grit_src.grit.predictor import VisualizationDemo | |
import json | |
# constants | |
WINDOW_NAME = "GRiT" | |
def dense_pred_to_caption(predictions): | |
boxes = predictions["instances"].pred_boxes if predictions["instances"].has("pred_boxes") else None | |
object_description = predictions["instances"].pred_object_descriptions.data | |
new_caption = "" | |
for i in range(len(object_description)): | |
new_caption += (object_description[i] + ": " + str([int(a) for a in boxes[i].tensor.cpu().detach().numpy()[0]])) + "; " | |
return new_caption | |
def setup_cfg(args): | |
cfg = get_cfg() | |
if args["cpu"]: | |
cfg.MODEL.DEVICE="cpu" | |
add_centernet_config(cfg) | |
add_grit_config(cfg) | |
cfg.merge_from_file(args["config_file"]) | |
cfg.merge_from_list(args["opts"]) | |
# Set score_threshold for builtin models | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args["confidence_threshold"] | |
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args["confidence_threshold"] | |
if args["test_task"]: | |
cfg.MODEL.TEST_TASK = args["test_task"] | |
cfg.MODEL.BEAM_SIZE = 1 | |
cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False | |
cfg.USE_ACT_CHECKPOINT = False | |
cfg.freeze() | |
return cfg | |
def get_parser(): | |
arg_dict = {'config_file': "models/grit_src/configs/GRiT_B_DenseCap_ObjectDet.yaml", 'cpu': False, 'confidence_threshold': 0.5, 'test_task': 'DenseCap', 'opts': ["MODEL.WEIGHTS", "pretrained_models/grit_b_densecap_objectdet.pth"]} | |
return arg_dict | |
def image_caption_api(image_src): | |
args2 = get_parser() | |
cfg = setup_cfg(args2) | |
demo = VisualizationDemo(cfg) | |
if image_src: | |
img = read_image(image_src, format="BGR") | |
predictions, visualized_output = demo.run_on_image(img) | |
new_caption = dense_pred_to_caption(predictions) | |
return new_caption |