Spaces:
Runtime error
Runtime error
from PIL import Image | |
import requests | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration, BlipProcessor, BlipForConditionalGeneration | |
import torch | |
from utils.util import resize_long_edge | |
class ImageCaptioning: | |
def __init__(self, device): | |
self.device = device | |
self.processor, self.model = self.initialize_model() | |
def initialize_model(self): | |
if self.device == 'cpu': | |
self.data_type = torch.float32 | |
else: | |
self.data_type = torch.float16 | |
# uncomment for load stronger captioner | |
# processor = Blip2Processor.from_pretrained("pretrained_models/blip2-opt-2.7b") | |
# model = Blip2ForConditionalGeneration.from_pretrained( | |
# "pretrained_models/blip2-opt-2.7b", torch_dtype=self.data_type | |
# ) | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
model.to(self.device) | |
return processor, model | |
def image_caption(self, image_src): | |
image = Image.open(image_src) | |
image = resize_long_edge(image) | |
inputs = self.processor(images=image, return_tensors="pt").to(self.device, self.data_type) | |
generated_ids = self.model.generate(**inputs) | |
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
print('\033[1;35m' + '*' * 100 + '\033[0m') | |
print('\nStep1, BLIP2 caption:') | |
print(generated_text) | |
print('\033[1;35m' + '*' * 100 + '\033[0m') | |
return generated_text | |
def image_caption_debug(self, image_src): | |
return "A dish with salmon, broccoli, and something yellow." |