import argparse import multiprocessing as mp import os import time import cv2 import tqdm import sys from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger sys.path.insert(0, 'models/grit_src/third_party/CenterNet2/projects/CenterNet2/') from centernet.config import add_centernet_config from models.grit_src.grit.config import add_grit_config from models.grit_src.grit.predictor import VisualizationDemo import json from utils.util import resize_long_edge_cv2 # constants WINDOW_NAME = "GRiT" def dense_pred_to_caption(predictions): boxes = predictions["instances"].pred_boxes if predictions["instances"].has("pred_boxes") else None object_description = predictions["instances"].pred_object_descriptions.data new_caption = "" for i in range(len(object_description)): new_caption += (object_description[i] + ": " + str([int(a) for a in boxes[i].tensor.cpu().detach().numpy()[0]])) + "; " return new_caption def setup_cfg(args): cfg = get_cfg() if args["cpu"]: cfg.MODEL.DEVICE="cpu" add_centernet_config(cfg) add_grit_config(cfg) cfg.merge_from_file(args["config_file"]) cfg.merge_from_list(args["opts"]) # Set score_threshold for builtin models cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args["confidence_threshold"] cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args["confidence_threshold"] if args["test_task"]: cfg.MODEL.TEST_TASK = args["test_task"] cfg.MODEL.BEAM_SIZE = 1 cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False cfg.USE_ACT_CHECKPOINT = False cfg.freeze() return cfg def get_parser(device): arg_dict = {'config_file': "models/grit_src/configs/GRiT_B_DenseCap_ObjectDet.yaml", 'cpu': False, 'confidence_threshold': 0.5, 'test_task': 'DenseCap', 'opts': ["MODEL.WEIGHTS", "pretrained_models/grit_b_densecap_objectdet.pth"]} if device == "cpu": arg_dict["cpu"] = True return arg_dict def image_caption_api(image_src, device): args2 = get_parser(device) cfg = setup_cfg(args2) demo = VisualizationDemo(cfg) if image_src: img = read_image(image_src, format="BGR") img = resize_long_edge_cv2(img, 384) predictions, visualized_output = demo.run_on_image(img) new_caption = dense_pred_to_caption(predictions) return new_caption