from models.segment_models.semgent_anything_model import SegmentAnything from models.segment_models.semantic_segment_anything_model import SemanticSegment from models.segment_models.edit_anything_model import EditAnything class RegionSemantic(): def __init__(self, device, image_caption_model, region_classify_model='edit_anything', sam_arch='vit_b'): self.device = device self.sam_arch = sam_arch self.image_caption_model = image_caption_model self.region_classify_model = region_classify_model self.init_models() def init_models(self): self.segment_model = SegmentAnything(self.device, arch=self.sam_arch) if self.region_classify_model == 'ssa': self.semantic_segment_model = SemanticSegment(self.device) elif self.region_classify_model == 'edit_anything': self.edit_anything_model = EditAnything(self.image_caption_model) print('initalize edit anything model') else: raise ValueError("semantic_class_model must be 'ssa' or 'edit_anything'") def semantic_prompt_gen(self, anns, topk=5): """ fliter too small objects and objects with low stability score anns: [{'class_name': 'person', 'bbox': [0.0, 0.0, 0.0, 0.0], 'size': [0, 0], 'stability_score': 0.0}, ...] semantic_prompt: "person: [0.0, 0.0, 0.0, 0.0]; ..." """ # Sort annotations by area in descending order sorted_annotations = sorted(anns, key=lambda x: x['area'], reverse=True) anns_len = len(sorted_annotations) # Select the top 10 largest regions top_10_largest_regions = sorted_annotations[:min(anns_len, topk)] semantic_prompt = "" for region in top_10_largest_regions: semantic_prompt += region['class_name'] + ': ' + str(region['bbox']) + "; " print(semantic_prompt) print('\033[1;35m' + '*' * 100 + '\033[0m') return semantic_prompt def region_semantic(self, img_src, region_classify_model='edit_anything'): print('\033[1;35m' + '*' * 100 + '\033[0m') print("\nStep3, Semantic Prompt:") print('extract region segmentation with SAM model....\n') anns = self.segment_model.generate_mask(img_src) print('finished...\n') if region_classify_model == 'ssa': print('generate region supervision with blip2 model....\n') anns_w_class = self.semantic_segment_model.semantic_class_w_mask(img_src, anns) print('finished...\n') elif region_classify_model == 'edit_anything': print('generate region supervision with edit anything model....\n') anns_w_class = self.edit_anything_model.semantic_class_w_mask(img_src, anns) print('finished...\n') else: raise ValueError("semantic_class_model must be 'ssa' or 'edit_anything'") return self.semantic_prompt_gen(anns_w_class) def region_semantic_debug(self, img_src): return "region_semantic_debug"