import gradio as gr
import cv2
import numpy as np
from PIL import Image
import base64
from io import BytesIO
from models.image_text_transformation import ImageTextTransformation
def pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def add_logo():
with open("examples/logo.png", "rb") as f:
logo_base64 = base64.b64encode(f.read()).decode()
return logo_base64
def process_image(image_src, processor):
gen_text = processor.image_to_text(image_src)
gen_image = processor.text_to_image(gen_text)
gen_image_str = pil_image_to_base64(gen_image)
# Combine the outputs into a single HTML output
custom_output = f'''
Image->Text->Image:
Text2Image
Using Source Image to do Retrieval on COCO:
Retrieval Top-3 Text
{gen_text}
Retrieval Top-3 Image
Using Generated texts to do Retrieval on COCO:
Retrieval Top-3 Text
{gen_text}
Retrieval Top-3 Image
'''
return custom_output
processor = ImageTextTransformation()
# Create Gradio input and output components
image_input = gr.inputs.Image(type='filepath', label="Input Image")
logo_base64 = add_logo()
# Create the title with the logo
title_with_logo = f' Understanding Image with Text'
# Create Gradio interface
interface = gr.Interface(
fn=lambda image: process_image(image, processor), # Pass the processor object using a lambda function
inputs=image_input,
outputs=gr.outputs.HTML(),
title=title_with_logo,
description="""
This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot.
"""
)
# Launch the interface
interface.launch()