EL GHAFRAOUI AYOUB
C
f33a600
from fastapi import FastAPI, Request, UploadFile, File,HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from ultralytics import YOLO
import aiofiles
import os
from pathlib import Path
import json
from jinja2 import Environment, FileSystemLoader
import uvicorn
from fastapi.middleware.cors import CORSMiddleware # Import CORS middleware
# add the fuzzy
import requests
#extract function from the video_processing path:
from video_processing.video_frames_opt import extract_frames_and_detect_objects, lik, lik_prediction
from video_processing.video_frames_new import extract_frames_and_detect_new_objects
import pandas as pd
import numpy as np
import cv2
import logging
import os
from dotenv import load_dotenv
import boto3
from dotenv import dotenv_values
# Configure logging to write to a file
logging.basicConfig(filename='uvicorn.log', level=logging.DEBUG)
# Create a JSON file with tracking results
# Define the Jinja2 environment
jinja_env = Environment(loader=FileSystemLoader("templates"))
# Set the environment variable
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Initialize FastAPI
app = FastAPI()
# CORS policy
origins = ["*"] # Allow requests from any origin
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"],
allow_headers=["*"],
)
# Serve static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Templates directory
templates = Jinja2Templates(directory="templates")
# Load the exported ONNX model
#onnx_model = YOLO('yolov8n.onnx')
# Directory to save uploaded videos
video_directory = Path("uploaded_videos")
# Directory to save the new videos:
video_directory_new = Path("uploaded_video_new")
# Chunk size for reading video files
CHUNK_SIZE = 1024 * 1024 # 1 MB
#################################################################
# define new function that upload the files from s3 bucket
# the part to load the env information
# Load environment variables from .env
import botocore
# Initialize the S3 client with anonymous access
s3 = boto3.client('s3', config=botocore.client.Config(signature_version=botocore.UNSIGNED))
@app.get("/download_s3_file/")
async def download_and_process_s3_file(s3_url: str):
try:
# Parse the S3 URL to extract bucket name and object key
bucket_name, object_key = s3_url.replace("s3://", "").split("/", 1)
# Construct the public URL for downloading the S3 object
public_url = f"https://{bucket_name}.s3.amazonaws.com/{object_key}"
response = requests.get(public_url)
file_name = object_key.split("/")[-1] # Extract the original filename
file_path = os.path.join("uploaded_video", file_name)
with open(file_path, "wb") as f:
f.write(response.content)
if file_path:
results = extract_frames_and_detect_objects(file_path)
json_data = lik(results)
processed_results = lik_prediction(json_data)
# Create a JSON file with tracking results
video_name = os.path.basename(file_path)
json_results_path = f"uploaded_videos/{video_name}.json"
with open(json_results_path, "w") as json_file:
json_file.write(processed_results)
return processed_results
else:
return {"message": "File download failed"}
except (requests.exceptions.RequestException, botocore.exceptions.ClientError) as e:
raise HTTPException(status_code=400, detail=f"Error processing video: {str(e)}")
# now get the access aws s3 bucket
AWS_ACCESS_KEY = os.environ.get("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.environ.get("AWS_SECRET_KEY")
AWS_S3_BUCKET_NAME = os.environ.get("AWS_S3_BUCKET_NAME")
FOLDER_NAME = os.environ.get("FOLDER_NAME")
# print the data access loading
print(FOLDER_NAME)
print('_url_upload_video_s3_')
def download_file_from_s3(bucket_name, access_key, secret_key, folder_name, name_for_s3):
s3_client = boto3.client(
service_name='s3',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
try:
# Define the path where the downloaded file will be saved
file_path = f"uploaded_video/{name_for_s3}"
# Check if the file already exists
if os.path.exists(file_path):
return file_path
s3_source_path = f"{FOLDER_NAME}/{name_for_s3}"
s3_client.download_file(bucket_name, s3_source_path, file_path)
return file_path
except Exception as e:
print(f"Error downloading file from S3: {e}")
return None
# Define a new endpoint to download files from S3, process them, and save JSON tracking results with changed URL names
@app.get("/process_s3_save/{file_name}")
async def process_and_save_file(file_name: str):
video_file_path = download_file_from_s3(AWS_S3_BUCKET_NAME, AWS_ACCESS_KEY, AWS_SECRET_KEY, FOLDER_NAME, file_name)
if video_file_path:
results = extract_frames_and_detect_objects(video_file_path)
json_data = lik(results)
processed_results = lik_prediction(json_data)
# Create a JSON file with tracking results
video_name = os.path.basename(video_file_path)
json_results_path = f"uploaded_videos/{video_name}.json"
with open(json_results_path, "w") as json_file:
json_file.write(processed_results)
return processed_results
else:
return {"message": "File download failed"}
#################################################################
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/upload/image", response_class=HTMLResponse)
async def upload_image_form(request: Request):
return templates.TemplateResponse("upload_image.html", {"request": request})
@app.post("/upload/video", response_class=HTMLResponse)
async def upload_video(video: UploadFile = File(...)):
# Ensure the directory exists, create it if it doesn't
video_directory.mkdir(parents=True, exist_ok=True)
# Define the path where the video will be saved
video_path = video_directory / video.filename
# Open the video file in binary write mode asynchronously and write the video data
async with aiofiles.open(video_path, "wb") as buffer:
while True:
# Read the video data in chunks asynchronously
chunk = await video.read(CHUNK_SIZE)
if not chunk:
break
# Write the chunk to the file
await buffer.write(chunk)
results = extract_frames_and_detect_objects(str(video_path))
######################################################
json_date = lik(results)
#####################################################
# Process the prediction
processed_results = lik_prediction(json_date)
######################################################
# Create a JSON file with tracking results
json_results_path = video_directory / f"{video.filename}.json"
open_path = str(json_results_path)
with open(open_path, "w") as json_file:
json_file.write(processed_results)
# Return the processed JSON data
return processed_results
# upload video and see the results:
@app.get("/upload/video_new", response_class=HTMLResponse)
async def upload_video_new(video: UploadFile = File(...)):
# Ensure the directory exists, create it if it doesn't
video_directory_new.mkdir(parents=True, exist_ok=True)
# Define the path where the video will be saved
video_path = video_directory_new / video.filename
# Open the video file in binary write mode asynchronously and write the video data
async with aiofiles.open(video_path, "wb") as buffer:
while True:
# Read the video data in chunks asynchronously
chunk = await video.read(CHUNK_SIZE)
if not chunk:
break
# Write the chunk to the file
await buffer.write(chunk)
results = extract_frames_and_detect_new_objects(str(video_path))
return results
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)