Spaces:
Build error
Build error
import torch | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding | |
) | |
from einops import rearrange | |
from ldm.modules.attention import SpatialTransformer | |
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
from ldm.util import exists | |
class StableVITON(UNetModel): | |
def __init__( | |
self, | |
dim_head_denorm=1, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
warp_flow_blks = [] | |
warp_zero_convs = [] | |
self.encode_output_chs = [ | |
320, | |
320, | |
640, | |
640, | |
640, | |
1280, | |
1280, | |
1280, | |
1280 | |
] | |
self.encode_output_chs2 = [ | |
320, | |
320, | |
320, | |
320, | |
640, | |
640, | |
640, | |
1280, | |
1280 | |
] | |
for in_ch, cont_ch in zip(self.encode_output_chs, self.encode_output_chs2): | |
dim_head = in_ch // self.num_heads | |
dim_head = dim_head // dim_head_denorm | |
warp_flow_blks.append(SpatialTransformer( | |
in_channels=in_ch, | |
n_heads=self.num_heads, | |
d_head=dim_head, | |
depth=self.transformer_depth, | |
context_dim=cont_ch, | |
use_linear=self.use_linear_in_transformer, | |
use_checkpoint=self.use_checkpoint, | |
)) | |
warp_zero_convs.append(self.make_zero_conv(in_ch)) | |
self.warp_flow_blks = nn.ModuleList(reversed(warp_flow_blks)) | |
self.warp_zero_convs = nn.ModuleList(reversed(warp_zero_convs)) | |
def make_zero_conv(self, channels): | |
return zero_module(conv_nd(2, channels, channels, 1, padding=0)) | |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): | |
hs = [] | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
if control is not None: | |
hint = control.pop() | |
for module in self.output_blocks[:3]: | |
control.pop() | |
h = torch.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context) | |
n_warp = len(self.encode_output_chs) | |
for i, (module, warp_blk, warp_zc) in enumerate(zip(self.output_blocks[3:n_warp+3], self.warp_flow_blks, self.warp_zero_convs)): | |
if control is None or (h.shape[-2] == 8 and h.shape[-1] == 6): | |
assert 0, f"shape is wrong : {h.shape}" | |
else: | |
hint = control.pop() | |
h = self.warp(h, hint, warp_blk, warp_zc) | |
h = torch.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context) | |
for module in self.output_blocks[n_warp+3:]: | |
if control is None: | |
h = torch.cat([h, hs.pop()], dim=1) | |
else: | |
h = torch.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context) | |
h = h.type(x.dtype) | |
return self.out(h) | |
def warp(self, x, hint, crossattn_layer, zero_conv, mask1=None, mask2=None): | |
hint = rearrange(hint, "b c h w -> b (h w) c").contiguous() | |
output = crossattn_layer(x, hint) | |
output = zero_conv(output) | |
return output + x | |
class NoZeroConvControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
use_VAEdownsample=False, | |
cond_first_ch=8, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received um_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
self.use_VAEdownsample = use_VAEdownsample | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.cond_first_block = TimestepEmbedSequential( | |
zero_module(conv_nd(dims, cond_first_ch, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
def forward(self, x, hint, timesteps, context, only_mid_control=False, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
if not self.use_VAEdownsample: | |
guided_hint = self.input_hint_block(hint, emb, context) | |
else: | |
guided_hint = self.cond_first_block(hint, emb, context) | |
outs = [] | |
hs = [] | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
hs.append(h) | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
hs.append(h) | |
outs.append(h) | |
h = self.middle_block(h, emb, context) | |
outs.append(h) | |
return outs, None |