Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
from typing import List, Tuple, Union | |
import torch | |
from fvcore.nn import giou_loss, smooth_l1_loss | |
from torch.nn import functional as F | |
from detectron2.layers import cat, ciou_loss, diou_loss | |
from detectron2.structures import Boxes | |
# Value for clamping large dw and dh predictions. The heuristic is that we clamp | |
# such that dw and dh are no larger than what would transform a 16px box into a | |
# 1000px box (based on a small anchor, 16px, and a typical image size, 1000px). | |
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16) | |
__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"] | |
class Box2BoxTransform: | |
""" | |
The box-to-box transform defined in R-CNN. The transformation is parameterized | |
by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height | |
by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height). | |
""" | |
def __init__( | |
self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP | |
): | |
""" | |
Args: | |
weights (4-element tuple): Scaling factors that are applied to the | |
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set | |
such that the deltas have unit variance; now they are treated as | |
hyperparameters of the system. | |
scale_clamp (float): When predicting deltas, the predicted box scaling | |
factors (dw and dh) are clamped such that they are <= scale_clamp. | |
""" | |
self.weights = weights | |
self.scale_clamp = scale_clamp | |
def get_deltas(self, src_boxes, target_boxes): | |
""" | |
Get box regression transformation deltas (dx, dy, dw, dh) that can be used | |
to transform the `src_boxes` into the `target_boxes`. That is, the relation | |
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless | |
any delta is too large and is clamped). | |
Args: | |
src_boxes (Tensor): source boxes, e.g., object proposals | |
target_boxes (Tensor): target of the transformation, e.g., ground-truth | |
boxes. | |
""" | |
assert isinstance(src_boxes, torch.Tensor), type(src_boxes) | |
assert isinstance(target_boxes, torch.Tensor), type(target_boxes) | |
src_widths = src_boxes[:, 2] - src_boxes[:, 0] | |
src_heights = src_boxes[:, 3] - src_boxes[:, 1] | |
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths | |
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights | |
target_widths = target_boxes[:, 2] - target_boxes[:, 0] | |
target_heights = target_boxes[:, 3] - target_boxes[:, 1] | |
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths | |
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights | |
wx, wy, ww, wh = self.weights | |
dx = wx * (target_ctr_x - src_ctr_x) / src_widths | |
dy = wy * (target_ctr_y - src_ctr_y) / src_heights | |
dw = ww * torch.log(target_widths / src_widths) | |
dh = wh * torch.log(target_heights / src_heights) | |
deltas = torch.stack((dx, dy, dw, dh), dim=1) | |
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!" | |
return deltas | |
def apply_deltas(self, deltas, boxes): | |
""" | |
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`. | |
Args: | |
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. | |
deltas[i] represents k potentially different class-specific | |
box transformations for the single box boxes[i]. | |
boxes (Tensor): boxes to transform, of shape (N, 4) | |
""" | |
deltas = deltas.float() # ensure fp32 for decoding precision | |
boxes = boxes.to(deltas.dtype) | |
widths = boxes[:, 2] - boxes[:, 0] | |
heights = boxes[:, 3] - boxes[:, 1] | |
ctr_x = boxes[:, 0] + 0.5 * widths | |
ctr_y = boxes[:, 1] + 0.5 * heights | |
wx, wy, ww, wh = self.weights | |
dx = deltas[:, 0::4] / wx | |
dy = deltas[:, 1::4] / wy | |
dw = deltas[:, 2::4] / ww | |
dh = deltas[:, 3::4] / wh | |
# Prevent sending too large values into torch.exp() | |
dw = torch.clamp(dw, max=self.scale_clamp) | |
dh = torch.clamp(dh, max=self.scale_clamp) | |
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] | |
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] | |
pred_w = torch.exp(dw) * widths[:, None] | |
pred_h = torch.exp(dh) * heights[:, None] | |
x1 = pred_ctr_x - 0.5 * pred_w | |
y1 = pred_ctr_y - 0.5 * pred_h | |
x2 = pred_ctr_x + 0.5 * pred_w | |
y2 = pred_ctr_y + 0.5 * pred_h | |
pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) | |
return pred_boxes.reshape(deltas.shape) | |
# @torch.jit.script | |
class Box2BoxTransformRotated: | |
""" | |
The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized | |
by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height | |
by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height), | |
and rotate a box's angle by da (radians). | |
Note: angles of deltas are in radians while angles of boxes are in degrees. | |
""" | |
def __init__( | |
self, | |
weights: Tuple[float, float, float, float, float], | |
scale_clamp: float = _DEFAULT_SCALE_CLAMP, | |
): | |
""" | |
Args: | |
weights (5-element tuple): Scaling factors that are applied to the | |
(dx, dy, dw, dh, da) deltas. These are treated as | |
hyperparameters of the system. | |
scale_clamp (float): When predicting deltas, the predicted box scaling | |
factors (dw and dh) are clamped such that they are <= scale_clamp. | |
""" | |
self.weights = weights | |
self.scale_clamp = scale_clamp | |
def get_deltas(self, src_boxes, target_boxes): | |
""" | |
Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used | |
to transform the `src_boxes` into the `target_boxes`. That is, the relation | |
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless | |
any delta is too large and is clamped). | |
Args: | |
src_boxes (Tensor): Nx5 source boxes, e.g., object proposals | |
target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth | |
boxes. | |
""" | |
assert isinstance(src_boxes, torch.Tensor), type(src_boxes) | |
assert isinstance(target_boxes, torch.Tensor), type(target_boxes) | |
src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1) | |
target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind( | |
target_boxes, dim=1 | |
) | |
wx, wy, ww, wh, wa = self.weights | |
dx = wx * (target_ctr_x - src_ctr_x) / src_widths | |
dy = wy * (target_ctr_y - src_ctr_y) / src_heights | |
dw = ww * torch.log(target_widths / src_widths) | |
dh = wh * torch.log(target_heights / src_heights) | |
# Angles of deltas are in radians while angles of boxes are in degrees. | |
# the conversion to radians serve as a way to normalize the values | |
da = target_angles - src_angles | |
da = (da + 180.0) % 360.0 - 180.0 # make it in [-180, 180) | |
da *= wa * math.pi / 180.0 | |
deltas = torch.stack((dx, dy, dw, dh, da), dim=1) | |
assert ( | |
(src_widths > 0).all().item() | |
), "Input boxes to Box2BoxTransformRotated are not valid!" | |
return deltas | |
def apply_deltas(self, deltas, boxes): | |
""" | |
Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`. | |
Args: | |
deltas (Tensor): transformation deltas of shape (N, k*5). | |
deltas[i] represents box transformation for the single box boxes[i]. | |
boxes (Tensor): boxes to transform, of shape (N, 5) | |
""" | |
assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5 | |
boxes = boxes.to(deltas.dtype).unsqueeze(2) | |
ctr_x = boxes[:, 0] | |
ctr_y = boxes[:, 1] | |
widths = boxes[:, 2] | |
heights = boxes[:, 3] | |
angles = boxes[:, 4] | |
wx, wy, ww, wh, wa = self.weights | |
dx = deltas[:, 0::5] / wx | |
dy = deltas[:, 1::5] / wy | |
dw = deltas[:, 2::5] / ww | |
dh = deltas[:, 3::5] / wh | |
da = deltas[:, 4::5] / wa | |
# Prevent sending too large values into torch.exp() | |
dw = torch.clamp(dw, max=self.scale_clamp) | |
dh = torch.clamp(dh, max=self.scale_clamp) | |
pred_boxes = torch.zeros_like(deltas) | |
pred_boxes[:, 0::5] = dx * widths + ctr_x # x_ctr | |
pred_boxes[:, 1::5] = dy * heights + ctr_y # y_ctr | |
pred_boxes[:, 2::5] = torch.exp(dw) * widths # width | |
pred_boxes[:, 3::5] = torch.exp(dh) * heights # height | |
# Following original RRPN implementation, | |
# angles of deltas are in radians while angles of boxes are in degrees. | |
pred_angle = da * 180.0 / math.pi + angles | |
pred_angle = (pred_angle + 180.0) % 360.0 - 180.0 # make it in [-180, 180) | |
pred_boxes[:, 4::5] = pred_angle | |
return pred_boxes | |
class Box2BoxTransformLinear: | |
""" | |
The linear box-to-box transform defined in FCOS. The transformation is parameterized | |
by the distance from the center of (square) src box to 4 edges of the target box. | |
""" | |
def __init__(self, normalize_by_size=True): | |
""" | |
Args: | |
normalize_by_size: normalize deltas by the size of src (anchor) boxes. | |
""" | |
self.normalize_by_size = normalize_by_size | |
def get_deltas(self, src_boxes, target_boxes): | |
""" | |
Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used | |
to transform the `src_boxes` into the `target_boxes`. That is, the relation | |
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true. | |
The center of src must be inside target boxes. | |
Args: | |
src_boxes (Tensor): square source boxes, e.g., anchors | |
target_boxes (Tensor): target of the transformation, e.g., ground-truth | |
boxes. | |
""" | |
assert isinstance(src_boxes, torch.Tensor), type(src_boxes) | |
assert isinstance(target_boxes, torch.Tensor), type(target_boxes) | |
src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2]) | |
src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3]) | |
target_l = src_ctr_x - target_boxes[:, 0] | |
target_t = src_ctr_y - target_boxes[:, 1] | |
target_r = target_boxes[:, 2] - src_ctr_x | |
target_b = target_boxes[:, 3] - src_ctr_y | |
deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1) | |
if self.normalize_by_size: | |
stride_w = src_boxes[:, 2] - src_boxes[:, 0] | |
stride_h = src_boxes[:, 3] - src_boxes[:, 1] | |
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1) | |
deltas = deltas / strides | |
return deltas | |
def apply_deltas(self, deltas, boxes): | |
""" | |
Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`. | |
Args: | |
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. | |
deltas[i] represents k potentially different class-specific | |
box transformations for the single box boxes[i]. | |
boxes (Tensor): boxes to transform, of shape (N, 4) | |
""" | |
# Ensure the output is a valid box. See Sec 2.1 of https://arxiv.org/abs/2006.09214 | |
deltas = F.relu(deltas) | |
boxes = boxes.to(deltas.dtype) | |
ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2]) | |
ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3]) | |
if self.normalize_by_size: | |
stride_w = boxes[:, 2] - boxes[:, 0] | |
stride_h = boxes[:, 3] - boxes[:, 1] | |
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1) | |
deltas = deltas * strides | |
l = deltas[:, 0::4] | |
t = deltas[:, 1::4] | |
r = deltas[:, 2::4] | |
b = deltas[:, 3::4] | |
pred_boxes = torch.zeros_like(deltas) | |
pred_boxes[:, 0::4] = ctr_x[:, None] - l # x1 | |
pred_boxes[:, 1::4] = ctr_y[:, None] - t # y1 | |
pred_boxes[:, 2::4] = ctr_x[:, None] + r # x2 | |
pred_boxes[:, 3::4] = ctr_y[:, None] + b # y2 | |
return pred_boxes | |
def _dense_box_regression_loss( | |
anchors: List[Union[Boxes, torch.Tensor]], | |
box2box_transform: Box2BoxTransform, | |
pred_anchor_deltas: List[torch.Tensor], | |
gt_boxes: List[torch.Tensor], | |
fg_mask: torch.Tensor, | |
box_reg_loss_type="smooth_l1", | |
smooth_l1_beta=0.0, | |
): | |
""" | |
Compute loss for dense multi-level box regression. | |
Loss is accumulated over ``fg_mask``. | |
Args: | |
anchors: #lvl anchor boxes, each is (HixWixA, 4) | |
pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4) | |
gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A)) | |
fg_mask: the foreground boolean mask of shape (N, R) to compute loss on | |
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou", | |
"diou", "ciou". | |
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to | |
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1" | |
""" | |
if isinstance(anchors[0], Boxes): | |
anchors = type(anchors[0]).cat(anchors).tensor # (R, 4) | |
else: | |
anchors = cat(anchors) | |
if box_reg_loss_type == "smooth_l1": | |
gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes] | |
gt_anchor_deltas = torch.stack(gt_anchor_deltas) # (N, R, 4) | |
loss_box_reg = smooth_l1_loss( | |
cat(pred_anchor_deltas, dim=1)[fg_mask], | |
gt_anchor_deltas[fg_mask], | |
beta=smooth_l1_beta, | |
reduction="sum", | |
) | |
elif box_reg_loss_type == "giou": | |
pred_boxes = [ | |
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) | |
] | |
loss_box_reg = giou_loss( | |
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" | |
) | |
elif box_reg_loss_type == "diou": | |
pred_boxes = [ | |
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) | |
] | |
loss_box_reg = diou_loss( | |
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" | |
) | |
elif box_reg_loss_type == "ciou": | |
pred_boxes = [ | |
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1) | |
] | |
loss_box_reg = ciou_loss( | |
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum" | |
) | |
else: | |
raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'") | |
return loss_box_reg | |