StableVITON / detectron2 /modeling /box_regression.py
rlawjdghek's picture
det2 (#6)
1527335 verified
raw
history blame
15.1 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List, Tuple, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch.nn import functional as F
from detectron2.layers import cat, ciou_loss, diou_loss
from detectron2.structures import Boxes
# Value for clamping large dw and dh predictions. The heuristic is that we clamp
# such that dw and dh are no larger than what would transform a 16px box into a
# 1000px box (based on a small anchor, 16px, and a typical image size, 1000px).
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"]
@torch.jit.script
class Box2BoxTransform:
"""
The box-to-box transform defined in R-CNN. The transformation is parameterized
by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height
by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height).
"""
def __init__(
self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP
):
"""
Args:
weights (4-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
such that the deltas have unit variance; now they are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
self.scale_clamp = scale_clamp
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): source boxes, e.g., object proposals
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
wx, wy, ww, wh = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
deltas = torch.stack((dx, dy, dw, dh), dim=1)
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
deltas = deltas.float() # ensure fp32 for decoding precision
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
x1 = pred_ctr_x - 0.5 * pred_w
y1 = pred_ctr_y - 0.5 * pred_h
x2 = pred_ctr_x + 0.5 * pred_w
y2 = pred_ctr_y + 0.5 * pred_h
pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1)
return pred_boxes.reshape(deltas.shape)
# @torch.jit.script
class Box2BoxTransformRotated:
"""
The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized
by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height
by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height),
and rotate a box's angle by da (radians).
Note: angles of deltas are in radians while angles of boxes are in degrees.
"""
def __init__(
self,
weights: Tuple[float, float, float, float, float],
scale_clamp: float = _DEFAULT_SCALE_CLAMP,
):
"""
Args:
weights (5-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh, da) deltas. These are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
self.scale_clamp = scale_clamp
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): Nx5 source boxes, e.g., object proposals
target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1)
target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind(
target_boxes, dim=1
)
wx, wy, ww, wh, wa = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
# Angles of deltas are in radians while angles of boxes are in degrees.
# the conversion to radians serve as a way to normalize the values
da = target_angles - src_angles
da = (da + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
da *= wa * math.pi / 180.0
deltas = torch.stack((dx, dy, dw, dh, da), dim=1)
assert (
(src_widths > 0).all().item()
), "Input boxes to Box2BoxTransformRotated are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*5).
deltas[i] represents box transformation for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 5)
"""
assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5
boxes = boxes.to(deltas.dtype).unsqueeze(2)
ctr_x = boxes[:, 0]
ctr_y = boxes[:, 1]
widths = boxes[:, 2]
heights = boxes[:, 3]
angles = boxes[:, 4]
wx, wy, ww, wh, wa = self.weights
dx = deltas[:, 0::5] / wx
dy = deltas[:, 1::5] / wy
dw = deltas[:, 2::5] / ww
dh = deltas[:, 3::5] / wh
da = deltas[:, 4::5] / wa
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::5] = dx * widths + ctr_x # x_ctr
pred_boxes[:, 1::5] = dy * heights + ctr_y # y_ctr
pred_boxes[:, 2::5] = torch.exp(dw) * widths # width
pred_boxes[:, 3::5] = torch.exp(dh) * heights # height
# Following original RRPN implementation,
# angles of deltas are in radians while angles of boxes are in degrees.
pred_angle = da * 180.0 / math.pi + angles
pred_angle = (pred_angle + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
pred_boxes[:, 4::5] = pred_angle
return pred_boxes
class Box2BoxTransformLinear:
"""
The linear box-to-box transform defined in FCOS. The transformation is parameterized
by the distance from the center of (square) src box to 4 edges of the target box.
"""
def __init__(self, normalize_by_size=True):
"""
Args:
normalize_by_size: normalize deltas by the size of src (anchor) boxes.
"""
self.normalize_by_size = normalize_by_size
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true.
The center of src must be inside target boxes.
Args:
src_boxes (Tensor): square source boxes, e.g., anchors
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2])
src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3])
target_l = src_ctr_x - target_boxes[:, 0]
target_t = src_ctr_y - target_boxes[:, 1]
target_r = target_boxes[:, 2] - src_ctr_x
target_b = target_boxes[:, 3] - src_ctr_y
deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1)
if self.normalize_by_size:
stride_w = src_boxes[:, 2] - src_boxes[:, 0]
stride_h = src_boxes[:, 3] - src_boxes[:, 1]
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
deltas = deltas / strides
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
# Ensure the output is a valid box. See Sec 2.1 of https://arxiv.org/abs/2006.09214
deltas = F.relu(deltas)
boxes = boxes.to(deltas.dtype)
ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2])
ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3])
if self.normalize_by_size:
stride_w = boxes[:, 2] - boxes[:, 0]
stride_h = boxes[:, 3] - boxes[:, 1]
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
deltas = deltas * strides
l = deltas[:, 0::4]
t = deltas[:, 1::4]
r = deltas[:, 2::4]
b = deltas[:, 3::4]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = ctr_x[:, None] - l # x1
pred_boxes[:, 1::4] = ctr_y[:, None] - t # y1
pred_boxes[:, 2::4] = ctr_x[:, None] + r # x2
pred_boxes[:, 3::4] = ctr_y[:, None] + b # y2
return pred_boxes
def _dense_box_regression_loss(
anchors: List[Union[Boxes, torch.Tensor]],
box2box_transform: Box2BoxTransform,
pred_anchor_deltas: List[torch.Tensor],
gt_boxes: List[torch.Tensor],
fg_mask: torch.Tensor,
box_reg_loss_type="smooth_l1",
smooth_l1_beta=0.0,
):
"""
Compute loss for dense multi-level box regression.
Loss is accumulated over ``fg_mask``.
Args:
anchors: #lvl anchor boxes, each is (HixWixA, 4)
pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4)
gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A))
fg_mask: the foreground boolean mask of shape (N, R) to compute loss on
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou",
"diou", "ciou".
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
"""
if isinstance(anchors[0], Boxes):
anchors = type(anchors[0]).cat(anchors).tensor # (R, 4)
else:
anchors = cat(anchors)
if box_reg_loss_type == "smooth_l1":
gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes]
gt_anchor_deltas = torch.stack(gt_anchor_deltas) # (N, R, 4)
loss_box_reg = smooth_l1_loss(
cat(pred_anchor_deltas, dim=1)[fg_mask],
gt_anchor_deltas[fg_mask],
beta=smooth_l1_beta,
reduction="sum",
)
elif box_reg_loss_type == "giou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = giou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
elif box_reg_loss_type == "diou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = diou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
elif box_reg_loss_type == "ciou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = ciou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
else:
raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'")
return loss_box_reg