rlawjdghek's picture
det2 (#6)
1527335 verified
raw
history blame
8.81 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import logging
from typing import Dict, List
import torch
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms_rotated, cat
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.memory import retry_if_cuda_oom
from ..box_regression import Box2BoxTransformRotated
from .build import PROPOSAL_GENERATOR_REGISTRY
from .proposal_utils import _is_tracing
from .rpn import RPN
logger = logging.getLogger(__name__)
def find_top_rrpn_proposals(
proposals,
pred_objectness_logits,
image_sizes,
nms_thresh,
pre_nms_topk,
post_nms_topk,
min_box_size,
training,
):
"""
For each feature map, select the `pre_nms_topk` highest scoring proposals,
apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk`
highest scoring proposals among all the feature maps if `training` is True,
otherwise, returns the highest `post_nms_topk` scoring proposals for each
feature map.
Args:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 5).
All proposal predictions on the feature maps.
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A).
image_sizes (list[tuple]): sizes (h, w) for each image
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS.
When RRPN is run on multiple feature maps (as in FPN) this number is per
feature map.
post_nms_topk (int): number of top k scoring proposals to keep after applying NMS.
When RRPN is run on multiple feature maps (as in FPN) this number is total,
over all feature maps.
min_box_size(float): minimum proposal box side length in pixels (absolute units wrt
input images).
training (bool): True if proposals are to be used in training, otherwise False.
This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..."
comment.
Returns:
proposals (list[Instances]): list of N Instances. The i-th Instances
stores post_nms_topk object proposals for image i.
"""
num_images = len(image_sizes)
device = proposals[0].device
# 1. Select top-k anchor for every level and every image
topk_scores = [] # #lvl Tensor, each of shape N x topk
topk_proposals = []
level_ids = [] # #lvl Tensor, each of shape (topk,)
batch_idx = torch.arange(num_images, device=device)
for level_id, proposals_i, logits_i in zip(
itertools.count(), proposals, pred_objectness_logits
):
Hi_Wi_A = logits_i.shape[1]
if isinstance(Hi_Wi_A, torch.Tensor): # it's a tensor in tracing
num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk)
else:
num_proposals_i = min(Hi_Wi_A, pre_nms_topk)
topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
# each is N x topk
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 5
topk_proposals.append(topk_proposals_i)
topk_scores.append(topk_scores_i)
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))
# 2. Concat all levels together
topk_scores = cat(topk_scores, dim=1)
topk_proposals = cat(topk_proposals, dim=1)
level_ids = cat(level_ids, dim=0)
# 3. For each image, run a per-level NMS, and choose topk results.
results = []
for n, image_size in enumerate(image_sizes):
boxes = RotatedBoxes(topk_proposals[n])
scores_per_img = topk_scores[n]
lvl = level_ids
valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img)
if not valid_mask.all():
if training:
raise FloatingPointError(
"Predicted boxes or scores contain Inf/NaN. Training has diverged."
)
boxes = boxes[valid_mask]
scores_per_img = scores_per_img[valid_mask]
lvl = lvl[valid_mask]
boxes.clip(image_size)
# filter empty boxes
keep = boxes.nonempty(threshold=min_box_size)
if _is_tracing() or keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = (boxes[keep], scores_per_img[keep], lvl[keep])
keep = batched_nms_rotated(boxes.tensor, scores_per_img, lvl, nms_thresh)
# In Detectron1, there was different behavior during training vs. testing.
# (https://github.com/facebookresearch/Detectron/issues/459)
# During training, topk is over the proposals from *all* images in the training batch.
# During testing, it is over the proposals for each image separately.
# As a result, the training behavior becomes batch-dependent,
# and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size.
# This bug is addressed in Detectron2 to make the behavior independent of batch size.
keep = keep[:post_nms_topk]
res = Instances(image_size)
res.proposal_boxes = boxes[keep]
res.objectness_logits = scores_per_img[keep]
results.append(res)
return results
@PROPOSAL_GENERATOR_REGISTRY.register()
class RRPN(RPN):
"""
Rotated Region Proposal Network described in :paper:`RRPN`.
"""
@configurable
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.anchor_boundary_thresh >= 0:
raise NotImplementedError(
"anchor_boundary_thresh is a legacy option not implemented for RRPN."
)
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
ret = super().from_config(cfg, input_shape)
ret["box2box_transform"] = Box2BoxTransformRotated(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS)
return ret
@torch.no_grad()
def label_and_sample_anchors(self, anchors: List[RotatedBoxes], gt_instances: List[Instances]):
"""
Args:
anchors (list[RotatedBoxes]): anchors for each feature map.
gt_instances: the ground-truth instances for each image.
Returns:
list[Tensor]:
List of #img tensors. i-th element is a vector of labels whose length is
the total number of anchors across feature maps. Label values are in {-1, 0, 1},
with meanings: -1 = ignore; 0 = negative class; 1 = positive class.
list[Tensor]:
i-th element is a Nx5 tensor, where N is the total number of anchors across
feature maps. The values are the matched gt boxes for each anchor.
Values are undefined for those anchors not labeled as 1.
"""
anchors = RotatedBoxes.cat(anchors)
gt_boxes = [x.gt_boxes for x in gt_instances]
del gt_instances
gt_labels = []
matched_gt_boxes = []
for gt_boxes_i in gt_boxes:
"""
gt_boxes_i: ground-truth boxes for i-th image
"""
match_quality_matrix = retry_if_cuda_oom(pairwise_iou_rotated)(gt_boxes_i, anchors)
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix)
# Matching is memory-expensive and may result in CPU tensors. But the result is small
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device)
# A vector of labels (-1, 0, 1) for each anchor
gt_labels_i = self._subsample_labels(gt_labels_i)
if len(gt_boxes_i) == 0:
# These values won't be used anyway since the anchor is labeled as background
matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
else:
# TODO wasted indexing computation for ignored boxes
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor
gt_labels.append(gt_labels_i) # N,AHW
matched_gt_boxes.append(matched_gt_boxes_i)
return gt_labels, matched_gt_boxes
@torch.no_grad()
def predict_proposals(self, anchors, pred_objectness_logits, pred_anchor_deltas, image_sizes):
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas)
return find_top_rrpn_proposals(
pred_proposals,
pred_objectness_logits,
image_sizes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_size,
self.training,
)