Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
def count_params(model): | |
total_params = sum(p.numel() for p in model.parameters()) | |
return total_params | |
class ActNorm(nn.Module): | |
def __init__(self, num_features, logdet=False, affine=True, | |
allow_reverse_init=False): | |
assert affine | |
super().__init__() | |
self.logdet = logdet | |
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) | |
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) | |
self.allow_reverse_init = allow_reverse_init | |
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
def initialize(self, input): | |
with torch.no_grad(): | |
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) | |
mean = ( | |
flatten.mean(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
std = ( | |
flatten.std(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
self.loc.data.copy_(-mean) | |
self.scale.data.copy_(1 / (std + 1e-6)) | |
def forward(self, input, reverse=False): | |
if reverse: | |
return self.reverse(input) | |
if len(input.shape) == 2: | |
input = input[:,:,None,None] | |
squeeze = True | |
else: | |
squeeze = False | |
_, _, height, width = input.shape | |
if self.training and self.initialized.item() == 0: | |
self.initialize(input) | |
self.initialized.fill_(1) | |
h = self.scale * (input + self.loc) | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
if self.logdet: | |
log_abs = torch.log(torch.abs(self.scale)) | |
logdet = height*width*torch.sum(log_abs) | |
logdet = logdet * torch.ones(input.shape[0]).to(input) | |
return h, logdet | |
return h | |
def reverse(self, output): | |
if self.training and self.initialized.item() == 0: | |
if not self.allow_reverse_init: | |
raise RuntimeError( | |
"Initializing ActNorm in reverse direction is " | |
"disabled by default. Use allow_reverse_init=True to enable." | |
) | |
else: | |
self.initialize(output) | |
self.initialized.fill_(1) | |
if len(output.shape) == 2: | |
output = output[:,:,None,None] | |
squeeze = True | |
else: | |
squeeze = False | |
h = output / self.scale - self.loc | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
return h | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class Labelator(AbstractEncoder): | |
"""Net2Net Interface for Class-Conditional Model""" | |
def __init__(self, n_classes, quantize_interface=True): | |
super().__init__() | |
self.n_classes = n_classes | |
self.quantize_interface = quantize_interface | |
def encode(self, c): | |
c = c[:,None] | |
if self.quantize_interface: | |
return c, None, [None, None, c.long()] | |
return c | |
class SOSProvider(AbstractEncoder): | |
# for unconditional training | |
def __init__(self, sos_token, quantize_interface=True): | |
super().__init__() | |
self.sos_token = sos_token | |
self.quantize_interface = quantize_interface | |
def encode(self, x): | |
# get batch size from data and replicate sos_token | |
c = torch.ones(x.shape[0], 1)*self.sos_token | |
c = c.long().to(x.device) | |
if self.quantize_interface: | |
return c, None, [None, None, c] | |
return c |