File size: 6,075 Bytes
a950ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
from pathlib import Path
import urllib.request
import torch

from .modeling import (
    ImageEncoderViT,
    MaskDecoder,
    PromptEncoder,
    Sam,
    TwoWayTransformer,
)

from .modeling.image_encoder_swin import SwinTransformer

from monai.utils import ensure_tuple_rep, optional_import

def build_sam_vit_h(checkpoint=None, image_size=1024):
    return _build_sam(
        encoder_embed_dim=1280,
        encoder_depth=32,
        encoder_num_heads=16,
        encoder_global_attn_indexes=[7, 15, 23, 31],
        checkpoint=checkpoint,
        image_size=image_size,
    )


build_sam = build_sam_vit_h


def build_sam_vit_l(checkpoint=None, image_size=1024):
    return _build_sam(
        encoder_embed_dim=1024,
        encoder_depth=24,
        encoder_num_heads=16,
        encoder_global_attn_indexes=[5, 11, 17, 23],
        checkpoint=checkpoint,
        image_size=image_size,
    )


def build_sam_vit_b(checkpoint=None, image_size=1024):
    return _build_sam(
        encoder_embed_dim=768,
        encoder_depth=12,
        encoder_num_heads=12,
        encoder_global_attn_indexes=[2, 5, 8, 11],
        checkpoint=checkpoint,
        image_size=image_size,
    )
"""
Examples::
            # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
            >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
            # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
            >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
            # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
            >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
"""

def build_sam_vit_swin(checkpoint=None, image_size=96):
    print('==> build_sam_vit_swin')
    return _build_sam(
        encoder_embed_dim=48,
        encoder_depth=12,
        encoder_num_heads=12,
        encoder_global_attn_indexes=[2, 5, 8, 11],
        checkpoint=checkpoint,
        image_size=image_size,
    )

sam_model_registry = {
    "default": build_sam_vit_h,
    "vit_h": build_sam_vit_h,
    "vit_l": build_sam_vit_l,
    "vit_b": build_sam_vit_b,
    "swin_vit": build_sam_vit_swin,
}


def _build_sam(
    encoder_embed_dim,
    encoder_depth,
    encoder_num_heads,
    encoder_global_attn_indexes,
    checkpoint=None,
    image_size=None,
    spatial_dims=3,
):
    prompt_embed_dim = 768
    patch_size = ensure_tuple_rep(2, spatial_dims)
    window_size = ensure_tuple_rep(7, spatial_dims)
    image_embedding_size = [size // 32 for size in image_size]
    sam = Sam(
        image_encoder=SwinTransformer(
            in_chans=1,
            embed_dim=encoder_embed_dim,
            window_size=window_size,
            patch_size=patch_size,
            depths=(2, 2, 6, 2), #(2, 2, 6, 2),
            num_heads=(3, 6, 12, 24),
            mlp_ratio=4.0,
            qkv_bias=True,
            spatial_dims=spatial_dims,
        ),
        prompt_encoder=PromptEncoder(
            embed_dim=prompt_embed_dim,
            image_embedding_size=image_embedding_size,
            input_image_size=image_size,
            mask_in_chans=16,
        ),
        mask_decoder=MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    sam.eval()
    if checkpoint is not None:
        checkpoint = Path(checkpoint)
        if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists():
            cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ")
            if len(cmd) == 0 or cmd.lower() == 'y':
                checkpoint.parent.mkdir(parents=True, exist_ok=True)
                print("Downloading SAM ViT-B checkpoint...")
                urllib.request.urlretrieve(
                    "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
                    checkpoint,
                )
                print(checkpoint.name, " is downloaded!")
        elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists():
            cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ")
            if len(cmd) == 0 or cmd.lower() == 'y':
                checkpoint.parent.mkdir(parents=True, exist_ok=True)
                print("Downloading SAM ViT-H checkpoint...")
                urllib.request.urlretrieve(
                    "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
                    checkpoint,
                )
                print(checkpoint.name, " is downloaded!")
        elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists():
            cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ")
            if len(cmd) == 0 or cmd.lower() == 'y':
                checkpoint.parent.mkdir(parents=True, exist_ok=True)
                print("Downloading SAM ViT-L checkpoint...")
                urllib.request.urlretrieve(
                    "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
                    checkpoint,
                )
                print(checkpoint.name, " is downloaded!")

        
    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f)
        sam.load_state_dict(state_dict)
    return sam