Spaces:
Running
Running
File size: 13,001 Bytes
a950ee6 a2f2ef1 a950ee6 a2f2ef1 a950ee6 a2f2ef1 a950ee6 a2f2ef1 a950ee6 a2f2ef1 a950ee6 a2f2ef1 19cfb69 a2f2ef1 a950ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from streamlit_image_coordinates import streamlit_image_coordinates
from model.data_process.demo_data_process import process_ct_gt
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
import monai.transforms as transforms
from utils import show_points, make_fig, reflect_points_into_model, initial_rectangle, reflect_json_data_to_3D_box, reflect_box_into_model, run
import nibabel as nib
import tempfile
print('script run')
#############################################
# init session_state
if 'option' not in st.session_state:
st.session_state.option = None
if 'text_prompt' not in st.session_state:
st.session_state.text_prompt = None
if 'reset_demo_case' not in st.session_state:
st.session_state.reset_demo_case = False
if 'preds_3D' not in st.session_state:
st.session_state.preds_3D = None
st.session_state.preds_3D_ori = None
if 'data_item' not in st.session_state:
st.session_state.data_item = None
if 'points' not in st.session_state:
st.session_state.points = []
if 'use_text_prompt' not in st.session_state:
st.session_state.use_text_prompt = False
if 'use_point_prompt' not in st.session_state:
st.session_state.use_point_prompt = False
if 'use_box_prompt' not in st.session_state:
st.session_state.use_box_prompt = False
if 'rectangle_3Dbox' not in st.session_state:
st.session_state.rectangle_3Dbox = [0,0,0,0,0,0]
if 'irregular_box' not in st.session_state:
st.session_state.irregular_box = False
if 'running' not in st.session_state:
st.session_state.running = False
if 'transparency' not in st.session_state:
st.session_state.transparency = 0.25
case_list = [
'model/asset/FLARE22_Tr_0002_0000.nii.gz',
'model/asset/FLARE22_Tr_0005_0000.nii.gz',
'model/asset/FLARE22_Tr_0034_0000.nii.gz',
'model/asset/FLARE22_Tr_0045_0000.nii.gz'
]
#############################################
#############################################
# reset functions
def clear_prompts():
st.session_state.points = []
st.session_state.rectangle_3Dbox = [0,0,0,0,0,0]
def reset_demo_case():
st.session_state.data_item = None
st.session_state.reset_demo_case = True
clear_prompts()
def clear_file():
st.session_state.option = None
process_ct_gt.clear()
reset_demo_case()
clear_prompts()
#############################################
st.image(Image.open('model/asset/overview back.png'), use_column_width=True)
github_col, arxive_col = st.columns(2)
with github_col:
st.write('GitHub repo:https://github.com/BAAI-DCAI/SegVol')
with arxive_col:
st.write('Paper:https://arxiv.org/abs/2311.13385')
# modify demo case here
demo_type = st.radio(
"Demo case source",
["Select", "Upload"],
on_change=clear_file
)
if demo_type=="Select":
uploaded_file = st.selectbox(
"Select a demo case",
case_list,
index=None,
placeholder="Select a demo case...",
on_change=reset_demo_case
)
else:
uploaded_file = st.file_uploader("Upload demo case(nii.gz)", type='nii.gz', on_change=reset_demo_case)
st.session_state.option = uploaded_file
if st.session_state.option is not None and \
st.session_state.reset_demo_case or (st.session_state.data_item is None and st.session_state.option is not None):
st.session_state.data_item = process_ct_gt(st.session_state.option)
st.session_state.reset_demo_case = False
st.session_state.preds_3D = None
st.session_state.preds_3D_ori = None
prompt_col1, prompt_col2 = st.columns(2)
with prompt_col1:
st.session_state.use_text_prompt = st.toggle('Sematic prompt')
text_prompt_type = st.radio(
"Sematic prompt type",
["Predefined", "Custom"],
disabled=(not st.session_state.use_text_prompt)
)
if text_prompt_type == "Predefined":
pre_text = st.selectbox(
"Predefined anatomical category:",
['liver', 'right kidney', 'spleen', 'pancreas', 'aorta', 'inferior vena cava', 'right adrenal gland', 'left adrenal gland', 'gallbladder', 'esophagus', 'stomach', 'duodenum', 'left kidney'],
index=None,
disabled=(not st.session_state.use_text_prompt)
)
else:
pre_text = st.text_input('Enter an Anatomical word or phrase:', None, max_chars=20,
disabled=(not st.session_state.use_text_prompt))
if pre_text is None or len(pre_text) > 0:
st.session_state.text_prompt = pre_text
else:
st.session_state.text_prompt = None
with prompt_col2:
spatial_prompt_on = st.toggle('Spatial prompt', on_change=clear_prompts)
spatial_prompt = st.radio(
"Spatial prompt type",
["Point prompt", "Box prompt"],
on_change=clear_prompts,
disabled=(not spatial_prompt_on))
st.session_state.enforce_zoom = st.checkbox('Enforce zoom-out-zoom-in')
if spatial_prompt == "Point prompt":
st.session_state.use_point_prompt = True
st.session_state.use_box_prompt = False
elif spatial_prompt == "Box prompt":
st.session_state.use_box_prompt = True
st.session_state.use_point_prompt = False
else:
st.session_state.use_point_prompt = False
st.session_state.use_box_prompt = False
if not spatial_prompt_on:
st.session_state.use_point_prompt = False
st.session_state.use_box_prompt = False
if not st.session_state.use_text_prompt:
st.session_state.text_prompt = None
if st.session_state.option is None:
st.write('please select demo case first')
else:
image_3D = st.session_state.data_item['z_image'][0].numpy()
col_control1, col_control2 = st.columns(2)
with col_control1:
selected_index_z = st.slider('X-Y view', 0, image_3D.shape[0] - 1, 162, key='xy', disabled=st.session_state.running)
with col_control2:
selected_index_y = st.slider('X-Z view', 0, image_3D.shape[1] - 1, 162, key='xz', disabled=st.session_state.running)
if st.session_state.use_box_prompt:
top, bottom = st.select_slider(
'Top and bottom of box',
options=range(0, 325),
value=(0, 324),
disabled=st.session_state.running
)
st.session_state.rectangle_3Dbox[0] = top
st.session_state.rectangle_3Dbox[3] = bottom
col_image1, col_image2 = st.columns(2)
if st.session_state.preds_3D is not None:
st.session_state.transparency = st.slider('Mask opacity', 0.0, 1.0, 0.25, disabled=st.session_state.running)
with col_image1:
image_z_array = image_3D[selected_index_z]
preds_z_array = None
if st.session_state.preds_3D is not None:
preds_z_array = st.session_state.preds_3D[selected_index_z]
image_z = make_fig(image_z_array, preds_z_array, st.session_state.points, selected_index_z, 'xy')
if st.session_state.use_point_prompt:
value_xy = streamlit_image_coordinates(image_z, width=325)
if value_xy is not None:
point_ax_xy = (selected_index_z, value_xy['y'], value_xy['x'])
if len(st.session_state.points) >= 3:
st.warning('Max point num is 3', icon="⚠️")
elif point_ax_xy not in st.session_state.points:
st.session_state.points.append(point_ax_xy)
print('point_ax_xy add rerun')
st.rerun()
elif st.session_state.use_box_prompt:
canvas_result_xy = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=3,
stroke_color='#2909F1',
background_image=image_z,
update_streamlit=True,
height=325,
width=325,
drawing_mode='transform',
point_display_radius=0,
key="canvas_xy",
initial_drawing=initial_rectangle,
display_toolbar=True
)
try:
print(canvas_result_xy.json_data['objects'][0]['angle'])
if canvas_result_xy.json_data['objects'][0]['angle'] != 0:
st.warning('Rotating is undefined behavior', icon="⚠️")
st.session_state.irregular_box = True
else:
st.session_state.irregular_box = False
reflect_json_data_to_3D_box(canvas_result_xy.json_data, view='xy')
except:
print('exception')
pass
else:
st.image(image_z, use_column_width=False)
with col_image2:
image_y_array = image_3D[:, selected_index_y, :]
preds_y_array = None
if st.session_state.preds_3D is not None:
preds_y_array = st.session_state.preds_3D[:, selected_index_y, :]
image_y = make_fig(image_y_array, preds_y_array, st.session_state.points, selected_index_y, 'xz')
if st.session_state.use_point_prompt:
value_yz = streamlit_image_coordinates(image_y, width=325)
if value_yz is not None:
point_ax_xz = (value_yz['y'], selected_index_y, value_yz['x'])
if len(st.session_state.points) >= 3:
st.warning('Max point num is 3', icon="⚠️")
elif point_ax_xz not in st.session_state.points:
st.session_state.points.append(point_ax_xz)
print('point_ax_xz add rerun')
st.rerun()
elif st.session_state.use_box_prompt:
if st.session_state.rectangle_3Dbox[1] <= selected_index_y and selected_index_y <= st.session_state.rectangle_3Dbox[4]:
draw = ImageDraw.Draw(image_y)
#rectangle xz view (upper-left and lower-right)
rectangle_coords = [(st.session_state.rectangle_3Dbox[2], st.session_state.rectangle_3Dbox[0]),
(st.session_state.rectangle_3Dbox[5], st.session_state.rectangle_3Dbox[3])]
# Draw the rectangle on the image
draw.rectangle(rectangle_coords, outline='#2909F1', width=3)
st.image(image_y, use_column_width=False)
else:
st.image(image_y, use_column_width=False)
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Clear", use_container_width=True,
disabled=(st.session_state.option is None or (len(st.session_state.points)==0 and not st.session_state.use_box_prompt and st.session_state.preds_3D is None))):
clear_prompts()
st.session_state.preds_3D = None
st.session_state.preds_3D_ori = None
st.rerun()
with col2:
img_nii = None
if st.session_state.preds_3D_ori is not None and st.session_state.data_item is not None:
meta_dict = st.session_state.data_item['meta']
foreground_start_coord = st.session_state.data_item['foreground_start_coord']
foreground_end_coord = st.session_state.data_item['foreground_end_coord']
original_shape = st.session_state.data_item['ori_shape']
pred_array = st.session_state.preds_3D_ori
original_array = np.zeros(original_shape)
original_array[foreground_start_coord[0]:foreground_end_coord[0],
foreground_start_coord[1]:foreground_end_coord[1],
foreground_start_coord[2]:foreground_end_coord[2]] = pred_array
original_array = original_array.transpose(2, 1, 0)
img_nii = nib.Nifti1Image(original_array, affine=meta_dict['affine'])
with tempfile.NamedTemporaryFile(suffix=".nii.gz") as tmpfile:
nib.save(img_nii, tmpfile.name)
with open(tmpfile.name, "rb") as f:
bytes_data = f.read()
st.download_button(
label="Download result(.nii.gz)",
data=bytes_data,
file_name="segvol_preds.nii.gz",
mime="application/octet-stream",
disabled=img_nii is None
)
with col3:
run_button_name = 'Run'if not st.session_state.running else 'Running'
if st.button(run_button_name, type="primary", use_container_width=True,
disabled=(
st.session_state.data_item is None or
(st.session_state.text_prompt is None and len(st.session_state.points) == 0 and st.session_state.use_box_prompt is False) or
st.session_state.irregular_box or
st.session_state.running
)):
st.session_state.running = True
st.rerun()
if st.session_state.running:
st.session_state.running = False
with st.status("Running...", expanded=False) as status:
run()
st.rerun() |