import numpy as np import monai.transforms as transforms import streamlit as st import tempfile class MinMaxNormalization(transforms.Transform): def __call__(self, data): d = dict(data) k = "image" d[k] = d[k] - d[k].min() d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None) return d class DimTranspose(transforms.Transform): def __init__(self, keys): self.keys = keys def __call__(self, data): d = dict(data) for key in self.keys: d[key] = np.swapaxes(d[key], -1, -3) return d class ForegroundNormalization(transforms.Transform): def __init__(self, keys): self.keys = keys def __call__(self, data): d = dict(data) for key in self.keys: d[key] = self.normalize(d[key]) return d def normalize(self, ct_narray): ct_voxel_ndarray = ct_narray.copy() ct_voxel_ndarray = ct_voxel_ndarray.flatten() thred = np.mean(ct_voxel_ndarray) voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)] upper_bound = np.percentile(voxel_filtered, 99.95) lower_bound = np.percentile(voxel_filtered, 00.05) mean = np.mean(voxel_filtered) std = np.std(voxel_filtered) ### transform ### ct_narray = np.clip(ct_narray, lower_bound, upper_bound) ct_narray = (ct_narray - mean) / max(std, 1e-8) return ct_narray @st.cache_data def process_ct_gt(case_path, spatial_size=(32,256,256)): if case_path is None: return None print('Data preprocessing...') # transform img_loader = transforms.LoadImage(dtype=np.float32) transform = transforms.Compose( [ transforms.Orientationd(keys=["image"], axcodes="RAS"), ForegroundNormalization(keys=["image"]), DimTranspose(keys=["image"]), MinMaxNormalization(), transforms.SpatialPadd(keys=["image"], spatial_size=spatial_size, mode='constant'), transforms.CropForegroundd(keys=["image"], source_key="image"), transforms.ToTensord(keys=["image"]), ] ) zoom_out_transform = transforms.Resized(keys=["image"], spatial_size=spatial_size, mode='nearest-exact') z_transform = transforms.Resized(keys=["image"], spatial_size=(325,325,325), mode='nearest-exact') ### item = {} # generate ct_voxel_ndarray if type(case_path) is str: ct_voxel_ndarray, meta_tensor_dict = img_loader(case_path) else: bytes_data = case_path.read() with tempfile.NamedTemporaryFile(suffix='.nii.gz') as tmp: tmp.write(bytes_data) tmp.seek(0) ct_voxel_ndarray, meta_tensor_dict = img_loader(tmp.name) ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze() ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0) item['image'] = ct_voxel_ndarray ori_shape = np.swapaxes(ct_voxel_ndarray, -1, -3).shape[1:] # transform item = transform(item) item_zoom_out = zoom_out_transform(item) item['zoom_out_image'] = item_zoom_out['image'] item['ori_shape'] = ori_shape item_z = z_transform(item) item['z_image'] = item_z['image'] item['meta'] = meta_tensor_dict return item