File size: 8,220 Bytes
3d2142b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# ------------------------------------------------------------------------
# Copyright (c) 2023-present, BAAI. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------
"""Text decoder."""

try:
    from flash_attn import flash_attn_func
    from flash_attn import flash_attn_with_kvcache
    from flash_attn.layers.rotary import apply_rotary_emb
except ImportError:
    flash_attn_func = None
    flash_attn_with_kvcache = None
    apply_rotary_emb = None

import torch
from torch import nn


class TransformerCache(nn.Module):
    """Transformer cache module."""

    def __init__(self, device=None, dtype=None):
        super(TransformerCache, self).__init__()
        self.device = device
        self.dtype = dtype
        self.start_pos = 0
        self.cache_dict = {}

    def init_seq(self, max_batch_size):
        seq_lens = torch.zeros(max_batch_size, dtype=torch.int32, device=self.device)
        self.cache_dict["seq_lens"] = seq_lens

    def init_rotary(self, seq_len, dim, theta=10000.0):
        grid = torch.arange(seq_len, dtype=torch.float32).unsqueeze_(-1)
        freq = torch.pow(theta, torch.arange(0, dim, 2)[: dim // 2].float().div_(dim))
        broadcast_freq = grid.mul(freq.reciprocal_().unsqueeze_(0))
        cache_cos = broadcast_freq.cos().view((-1, dim // 2))
        cache_sin = broadcast_freq.sin().view((-1, dim // 2))
        self.cache_dict["cos"] = cache_cos.to(self.device, self.dtype)
        self.cache_dict["sin"] = cache_sin.to(self.device, self.dtype)

    def init_kv(self, mixer, kv_size):
        cache_k = torch.zeros(*kv_size, dtype=self.dtype, device=self.device)
        cache_v = torch.zeros(*kv_size, dtype=self.dtype, device=self.device)
        self.cache_dict[f"{id(mixer)}_k"] = cache_k
        self.cache_dict[f"{id(mixer)}_v"] = cache_v

    def set_seq(self, start_pos=0, end_pos=None):
        self.start_pos = start_pos
        if "seq_lens" in self.cache_dict:
            self.cache_dict["seq_lens"].fill_(start_pos)
        if "cos" in self.cache_dict and end_pos is not None:
            self.cache_dict["seq_cos"] = self.cache_dict["cos"][self.start_pos : end_pos]
            self.cache_dict["seq_sin"] = self.cache_dict["sin"][self.start_pos : end_pos]

    def forward_rotary(self, q, k, inplace=False):
        cos = self.cache_dict.get("seq_cos", self.cache_dict.get("cos", None))
        sin = self.cache_dict.get("seq_sin", self.cache_dict.get("sin", None))
        if cos is None or sin is None:
            return q, k
        q = apply_rotary_emb(q, cos, sin, interleaved=True, inplace=inplace)
        k = apply_rotary_emb(k, cos, sin, interleaved=True, inplace=inplace)
        return q, k

    def forward_flash(self, mixer, q, k, v):
        cache_k = self.cache_dict.get(f"{id(mixer)}_k", None)
        cache_v = self.cache_dict.get(f"{id(mixer)}_v", None)
        flash_args = {"softmax_scale": mixer.scale, "causal": True}
        if cache_k is None or cache_v is None:
            return flash_attn_func(q, k, v, **flash_args)
        flash_args["cache_seqlens"] = self.cache_dict["seq_lens"][: q.shape[0]]
        return flash_attn_with_kvcache(q, cache_k, cache_v, k, v, **flash_args)


class Attention(nn.Module):
    """Self-Attention layer."""

    def __init__(self, dim, num_heads, bias=True):
        super(Attention, self).__init__()
        self.qkv = nn.Linear(dim, dim * 3, bias=bias)
        self.proj = nn.Linear(dim, dim, bias=bias)
        self.head_dim = dim // num_heads
        self.num_heads = num_heads
        self.scale = self.head_dim**-0.5
        self.cache = nn.Module()

    def forward(self, x):
        qkv_shape = (-1, x.size(1), 3, self.num_heads, self.head_dim)
        q, k, v = self.qkv(x).view(qkv_shape).unbind(dim=2)
        q, k = self.cache.forward_rotary(q, k, inplace=True)
        o = self.cache.forward_flash(self, q, k, v)
        return self.proj(o.flatten(2))


class MLP(nn.Module):
    """Two layers MLP."""

    def __init__(self, dim, mlp_dim, bias=True):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(dim, mlp_dim, bias=bias)
        self.fc2 = nn.Linear(mlp_dim, dim, bias=bias)
        self.activation = nn.GELU()

    def forward(self, x):
        return self.fc2(self.activation(self.fc1(x)))


class Block(nn.Module):
    """Transformer block."""

    def __init__(self, dim, num_heads, mlp_dim, bias=True):
        super(Block, self).__init__()
        self.attn = Attention(dim, num_heads, bias=bias)
        self.mlp = MLP(dim, mlp_dim, bias=bias)
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

    def forward(self, x):
        x = self.attn(self.norm1(x)).add_(x)
        return self.mlp(self.norm2(x)).add_(x)


class Transformer(nn.Module):
    """Causal transformer decoder."""

    def __init__(self, depth, dim, num_heads, mlp_dim, vocab_size):
        super(Transformer, self).__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.vocab_size = vocab_size
        self.tok_embeddings = nn.Embedding(vocab_size, dim)
        self.blocks = nn.ModuleList(Block(dim, num_heads, mlp_dim) for _ in range(depth))
        self.norm = nn.LayerNorm(dim)
        self.text_proj = nn.Linear(dim, vocab_size, bias=False)

    def forward(self, prompts, tokens, start_pos=0):
        prompt_len = prompts.size(1)
        start_pos = start_pos + (prompt_len if start_pos > 0 else 0)
        end_pos = start_pos + tokens.size(1) + (0 if start_pos > 0 else prompt_len)
        self.cache.set_seq(start_pos, end_pos)
        x = self.tok_embeddings(tokens)
        x = x if start_pos > 0 else torch.cat([prompts, x], dim=1)
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x[:, 0 if start_pos > 0 else prompt_len :])
        return self.text_proj(x).float()


class TextDecoder(nn.Module):
    """Module to decode texts."""

    def __init__(
        self,
        depth,
        embed_dim,
        num_heads,
        mlp_ratio,
        prompt_embed_dim,
        max_seq_len,
        vocab_size,
    ):
        super(TextDecoder, self).__init__()
        self.max_seq_len = max_seq_len
        self.max_text_len = self.max_seq_len - 1
        self.encoder = nn.Linear(prompt_embed_dim, embed_dim, bias=False)
        self.transformer = Transformer(
            depth=depth,
            dim=embed_dim,
            mlp_dim=embed_dim * mlp_ratio,
            num_heads=num_heads,
            vocab_size=vocab_size,
        )

    def reset_cache(self, max_batch_size=1, max_seq_len=None):
        device, dtype = self.encoder.weight.device, self.encoder.weight.dtype
        max_seq_len = self.max_seq_len if max_seq_len is None else max_seq_len
        num_heads, head_dim = self.transformer.num_heads, self.transformer.head_dim
        self.transformer.cache = TransformerCache(device=device, dtype=dtype)
        self.transformer.cache.init_seq(max_batch_size)
        self.transformer.cache.init_rotary(max_seq_len, head_dim, theta=10000.0)
        kv_cache_size = (max_batch_size, max_seq_len, num_heads, head_dim)
        for blk in self.transformer.blocks:
            blk.attn.__dict__["cache"] = self.transformer.cache
            self.transformer.cache.init_kv(blk.attn, kv_cache_size) if not self.training else None

    def get_prompts(self, prompt_tokens):
        return self.encoder(prompt_tokens)

    def get_outputs(self, inputs, start_pos=0):
        return {"text_pred": self.transformer(inputs["prompts"], inputs["tokens"], start_pos)}

    def forward(self, inputs, start_pos=0):
        return self.get_outputs(inputs, start_pos)