Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------ | |
# Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
"""Loss layers.""" | |
from torch import nn | |
def reduce_loss(loss, reduction="mean"): | |
"""Reduce the loss.""" | |
if reduction == "mean" or reduction == "sum": | |
return getattr(loss, reduction)() | |
if reduction == "batch_mean": | |
return loss.sum().mul_(1.0 / loss.size(0)) | |
return loss | |
class BinaryFocalLoss(nn.Module): | |
"""Binary focal loss.""" | |
def __init__(self, alpha=0.25, reduction="none"): | |
super(BinaryFocalLoss, self).__init__() | |
self.alpha = alpha | |
self.reduction = reduction | |
def forward(self, input, target): | |
alpha, p = self.alpha, input.sigmoid() | |
neg_alpha, neg_target = 1.0 - alpha, 1.0 - target | |
alpha_weight = target.mul(alpha).add_(neg_target.mul(neg_alpha)) | |
focal_weight = (1.0 - p).mul_(target).add_(p.mul(neg_target)).square() | |
loss = nn.functional.binary_cross_entropy_with_logits(input, target, reduction="none") | |
return reduce_loss(loss * focal_weight.mul_(alpha_weight), self.reduction) | |
class BinaryDiceLoss(nn.Module): | |
"""Binary dice loss.""" | |
def __init__(self, eps=1.0, reduction="none"): | |
super(BinaryDiceLoss, self).__init__() | |
self.eps = eps | |
self.reduction = reduction | |
def forward(self, input, target): | |
input = input.sigmoid() | |
num = input.mul(target).sum(-1).mul_(2).add_(self.eps) | |
den = input.add(target).sum(-1).add_(self.eps) | |
return reduce_loss(1.0 - num / den, self.reduction) | |
class CrossEntropyLoss(nn.Module): | |
"""Cross entropy loss with label smoothing.""" | |
def __init__(self, epsilon=0, reduction="none"): | |
super(CrossEntropyLoss, self).__init__() | |
self.epsilon = epsilon | |
self.reduction = reduction | |
def forward_dense(self, input, target): | |
dim, target = input.shape[-1], target.squeeze_() | |
x = nn.functional.log_softmax(input, dim=-1) | |
y = nn.functional.one_hot(target, dim).float() | |
x = x.permute([0, x.dim() - 1] + list(range(x.dim()))[1:-1]) if x.dim() > 2 else x | |
y = y.permute([0, y.dim() - 1] + list(range(y.dim()))[1:-1]) if y.dim() > 2 else y | |
loss = nn.functional.cross_entropy(x, y, reduction="none", label_smoothing=self.epsilon) | |
return reduce_loss(loss, self.reduction) | |
def forward(self, input, target): | |
if self.epsilon > 0: | |
return self.forward_dense(input, target) | |
return nn.functional.cross_entropy(input, target, reduction=self.reduction) | |