Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# Source from: https://github.com/facebookresearch/llama/blob/main/llama/tokenizer.py | |
import os | |
from logging import getLogger | |
from typing import List | |
from sentencepiece import SentencePieceProcessor | |
logger = getLogger() | |
class TextTokenizer: | |
"""Tokenizing and encoding/decoding text using SentencePiece.""" | |
def __init__(self, model_path=None): | |
""" | |
Initializes the Tokenizer with a SentencePiece model. | |
Args: | |
model_path (str): The path to the SentencePiece model file. | |
""" | |
if model_path is None: | |
model_path = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "text_tokenizer.model" | |
) | |
# reload tokenizer | |
assert os.path.isfile(model_path), model_path | |
self.sp_model = SentencePieceProcessor(model_file=model_path) | |
logger.info(f"Reloaded SentencePiece model from {model_path}") | |
# BOS / EOS token IDs | |
self.n_words: int = self.sp_model.vocab_size() | |
self.bos_id: int = self.sp_model.bos_id() | |
self.eos_id: int = self.sp_model.eos_id() | |
self.pad_id: int = self.sp_model.pad_id() | |
self.pad_id += self.n_words if self.pad_id < 0 else 0 | |
logger.info(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}") | |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
def encode(self, s: str, bos: bool, eos: bool) -> List[int]: | |
""" | |
Encodes a string into a list of token IDs. | |
Args: | |
s (str): The input string to be encoded. | |
bos (bool): Whether to prepend the beginning-of-sequence token. | |
eos (bool): Whether to append the end-of-sequence token. | |
Returns: | |
List[int]: A list of token IDs. | |
""" | |
assert type(s) is str | |
t = self.sp_model.encode(s) | |
if bos: | |
t = [self.bos_id] + t | |
if eos: | |
t = t + [self.eos_id] | |
return t | |
def decode(self, t: List[int]) -> str: | |
""" | |
Decodes a list of token IDs into a string. | |
Args: | |
t (List[int]): The list of token IDs to be decoded. | |
Returns: | |
str: The decoded string. | |
""" | |
return self.sp_model.decode(t) | |
def tokenize(self, texts, context_length=None): | |
"""Encode a list of string. | |
Parameters | |
---------- | |
texts : Union[str, List[str]] | |
The input text(s). | |
context_length : int, optional | |
The max token length. | |
Returns | |
------- | |
List[List[int]] | |
The encoded token indices. | |
""" | |
if isinstance(texts, str): | |
texts = [texts] | |
tokens = [self.encode(text, bos=True, eos=True) for text in texts] | |
if context_length is None: | |
return tokens | |
truncated_tokens = [] | |
for k, t in enumerate(tokens): | |
if len(t) > context_length: | |
t = t[:context_length] | |
t[-1] = self.eos_id | |
truncated_tokens.append(t) | |
return truncated_tokens | |
def detokenize(self, tokens): | |
"""Decode a list of string. | |
Parameters | |
---------- | |
tokens : Union[List[List[int]], numpy.ndarray] | |
The input tokens. | |
Returns | |
------- | |
List[str] | |
The decoded text strings. | |
""" | |
if hasattr(tokens, "tolist"): | |
tokens = tokens.tolist() | |
texts = [] | |
for i in range(len(tokens)): | |
t = tokens[i][1:] | |
try: | |
eot_idx = t.index(self.eos_id) | |
t = t[:eot_idx] | |
except ValueError: | |
pass | |
texts.append(self.decode(t)) | |
return texts | |