PhyscalX's picture
Add code
3d2142b
raw
history blame
3.83 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Source from: https://github.com/facebookresearch/llama/blob/main/llama/tokenizer.py
import os
from logging import getLogger
from typing import List
from sentencepiece import SentencePieceProcessor
logger = getLogger()
class TextTokenizer:
"""Tokenizing and encoding/decoding text using SentencePiece."""
def __init__(self, model_path=None):
"""
Initializes the Tokenizer with a SentencePiece model.
Args:
model_path (str): The path to the SentencePiece model file.
"""
if model_path is None:
model_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "text_tokenizer.model"
)
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
logger.info(f"Reloaded SentencePiece model from {model_path}")
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
self.pad_id += self.n_words if self.pad_id < 0 else 0
logger.info(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}")
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
"""
Encodes a string into a list of token IDs.
Args:
s (str): The input string to be encoded.
bos (bool): Whether to prepend the beginning-of-sequence token.
eos (bool): Whether to append the end-of-sequence token.
Returns:
List[int]: A list of token IDs.
"""
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
return self.sp_model.decode(t)
def tokenize(self, texts, context_length=None):
"""Encode a list of string.
Parameters
----------
texts : Union[str, List[str]]
The input text(s).
context_length : int, optional
The max token length.
Returns
-------
List[List[int]]
The encoded token indices.
"""
if isinstance(texts, str):
texts = [texts]
tokens = [self.encode(text, bos=True, eos=True) for text in texts]
if context_length is None:
return tokens
truncated_tokens = []
for k, t in enumerate(tokens):
if len(t) > context_length:
t = t[:context_length]
t[-1] = self.eos_id
truncated_tokens.append(t)
return truncated_tokens
def detokenize(self, tokens):
"""Decode a list of string.
Parameters
----------
tokens : Union[List[List[int]], numpy.ndarray]
The input tokens.
Returns
-------
List[str]
The decoded text strings.
"""
if hasattr(tokens, "tolist"):
tokens = tokens.tolist()
texts = []
for i in range(len(tokens)):
t = tokens[i][1:]
try:
eot_idx = t.index(self.eos_id)
t = t[:eot_idx]
except ValueError:
pass
texts.append(self.decode(t))
return texts