--- title: README emoji: 🌍 colorFrom: blue colorTo: green sdk: static pinned: false license: mit short_description: Official Repository of Pretrained Models on BigEarthNet v2.0 --- [TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/) :---:|:---:|:---:|:---:|:---: TU Berlin Logo | RSiM Logo | DIMA Logo | BigEarth Logo | BIFOLD Logo # BigEarthNet v2.0 Pretrained Weights We provide pretrained weights for several different models. The weights for the best-performing model based on the Macro Average Precision score on the recommended test split are uploaded. All models are available in three different configurations: Using Sentinel-1 only (S1), Sentinel-2 only (S2) or both Sentinel-1 and Sentinel-2 (S1+S2) modalities together. The following bands were used to train the models: - For models using Sentinel-1 only: Sentinel-1 bands `["VH", "VV"]` - For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]` - For models using Sentinel-1 and Sentinel-2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]` The multi-hot encoded output of the model indicates the predicted multi-class label. The multi-hot encoded output relates to the following classes sorted in alphabetical order: ['Agro-forestry areas', 'Arable land', 'Beaches, dunes, sands', 'Broad-leaved forest', 'Coastal wetlands', 'Complex cultivation patterns', 'Coniferous forest', 'Industrial or commercial units', 'Inland waters', 'Inland wetlands', 'Land principally occupied by agriculture, with significant areas of natural vegetation', 'Marine waters', 'Mixed forest', 'Moors, heathland and sclerophyllous vegetation', 'Natural grassland and sparsely vegetated areas', 'Pastures', 'Permanent crops', 'Transitional woodland, shrub', 'Urban fabric'] ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) | Model | equivalent [`timm`](https://huggingface.co/docs/timm/en/index) model name | Sentinel-1 only | Sentinel-2 only | Sentinel-1 and Sentinel-2 | |:-----------------|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | ConvMixer-768/32 | `convmixer_768_32` | [ConvMixer-768/32 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s1-v0.1.1) | [ConvMixer-768/32 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s2-v0.1.1) | [ConvMixer-768/32 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-all-v0.1.1) | | ConvNext v2 Base | `convnextv2_base` | [ConvNext v2 Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1) | [ConvNext v2 Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s2-v0.1.1) | [ConvNext v2 Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-all-v0.1.1) | | MLP-Mixer Base | `mixer_b16_224` | [MLP-Mixer Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s1-v0.1.1) | [MLP-Mixer Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s2-v0.1.1) | [MLP-Mixer Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-all-v0.1.1) | | MobileViT-S | `mobilevit_s` | [MobileViT-S S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s1-v0.1.1) | [MobileViT-S S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s2-v0.1.1) | [MobileViT-S S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-all-v0.1.1) | | ResNet-50 | `resnet50` | [ResNet-50 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s1-v0.1.1) | [ResNet-50 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1) | [ResNet-50 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-all-v0.1.1) | | ResNet-101 | `resnet101` | [ResNet-101 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s1-v0.1.1) | [ResNet-101 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s2-v0.1.1) | [ResNet-101 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-all-v0.1.1) | | ViT Base | `vit_base_patch8_224` | [ViT Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s1-v0.1.1) | [ViT Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s2-v0.1.1) | [ViT Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-all-v0.1.1) | ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) To use the model, download the codes that define the model architecture from the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the code below. Note that [`configilm`](https://pypi.org/project/configilm/) is a requirement to use the code below. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder") ``` e.g. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained( "BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1") ``` If you use any of these models in your research, please cite the following papers: ```bibtex CITATION FOR DATASET PAPER ``` ```bibtex @article{hackel2024configilm, title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering}, author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m}, journal={SoftwareX}, volume={26}, pages={101731}, year={2024}, publisher={Elsevier} } ```