BK-AI commited on
Commit
819654b
1 Parent(s): 059c3dc

update plot for office classification, upload training notebook

Browse files
Files changed (2) hide show
  1. app.py +8 -6
  2. office_classification_BERT.ipynb +0 -0
app.py CHANGED
@@ -81,9 +81,7 @@ def translate_to_de(SubmittedText):
81
  return text
82
 
83
 
84
- def create_bar_plot(rates, language):
85
- barnames = BARS_DEP_FR if language == "fr" else BARS_DEP_DE
86
-
87
  y_pos = np.arange(len(barnames))
88
  plt.barh(y_pos, rates)
89
  plt.yticks(y_pos, barnames)
@@ -128,7 +126,7 @@ def show_chosen_category(barnames, rates, language):
128
 
129
 
130
  pipeDep = load_model("saved_model_dep")
131
- pipeOffice = load_model("saved_model_dep")
132
 
133
  labelencoderOffice = preprocessing.LabelEncoder()
134
  labelencoderOffice.classes_ = np.load("classes_office.npy")
@@ -147,12 +145,16 @@ def textclassification(SubmittedText):
147
  # Make the prediction with the 1000 first characters
148
  images = []
149
  chosenCategoryTexts = []
150
- for pipe in (pipeDep, pipeOffice):
 
 
 
 
151
  prediction = pipe(SubmittedText[0:1000], return_all_scores=True)
152
  rates = [row["score"] for row in prediction[0]]
153
 
154
  # Create barplot & output text
155
- im, barnames = create_bar_plot(rates, language)
156
  images.append(im)
157
 
158
  chosenCategoryText = show_chosen_category(barnames, rates, language)
 
81
  return text
82
 
83
 
84
+ def create_bar_plot(rates, barnames):
 
 
85
  y_pos = np.arange(len(barnames))
86
  plt.barh(y_pos, rates)
87
  plt.yticks(y_pos, barnames)
 
126
 
127
 
128
  pipeDep = load_model("saved_model_dep")
129
+ pipeOffice = load_model("saved_model_office")
130
 
131
  labelencoderOffice = preprocessing.LabelEncoder()
132
  labelencoderOffice.classes_ = np.load("classes_office.npy")
 
145
  # Make the prediction with the 1000 first characters
146
  images = []
147
  chosenCategoryTexts = []
148
+
149
+ labelsDep = BARS_DEP_FR if language == "fr" else BARS_DEP_DE
150
+ labelsOffice = labelencoderOffice.classes_
151
+
152
+ for pipe, barnames in zip((pipeDep, pipeOffice), (labelsDep, labelsOffice)):
153
  prediction = pipe(SubmittedText[0:1000], return_all_scores=True)
154
  rates = [row["score"] for row in prediction[0]]
155
 
156
  # Create barplot & output text
157
+ im, barnames = create_bar_plot(rates, barnames)
158
  images.append(im)
159
 
160
  chosenCategoryText = show_chosen_category(barnames, rates, language)
office_classification_BERT.ipynb ADDED
The diff for this file is too large to render. See raw diff