import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import tempfile # Corrected model class name model_name = "potsawee/t5-large-generation-squad-QuestionAnswer" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) uploaded_file = st.file_uploader("Upload Document or Paragraph") if uploaded_file is not None: with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(uploaded_file.read()) # Close the file before reading its contents temp_file.close() with open(temp_file.name, 'r', encoding='utf-8') as file: document_text = file.read() st.success("Document uploaded successfully!") else: document_text = st.text_area("Enter Text (Optional)", height=200) question = st.text_input("Ask a Question") bouton_ok = st.button("Answer") if bouton_ok: # Improved prompt for better context context = document_text if document_text else "Empty document." inputs = tokenizer.encode(f"Question: {question} Context: {context}", return_tensors='pt', max_length=512, truncation=True) outputs = model.generate(inputs, max_length=150, min_length=80, length_penalty=5, num_beams=2) summary = tokenizer.decode(outputs[0]) st.text("Answer:") st.text(summary)