Spaces:
Sleeping
Sleeping
File size: 3,024 Bytes
2217335 f5848c0 2217335 d878e42 1cdd61e 033e5a9 2217335 a5d9210 2217335 708527c 2217335 c774338 2217335 c8bd9ca 2217335 c42abf4 2217335 c42abf4 2217335 c774338 1983ef1 c774338 843fee2 084159d 1983ef1 c774338 e742531 2217335 c8bd9ca e742531 c774338 e742531 2217335 e742531 2217335 e742531 2217335 e742531 033e5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import logging
import os
import requests
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
#vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed
#vectorstore = "vectorestore" # CA only
vectorstore = "index-BAAI_bge-m3-1500-200-recursive_splitter-CA_ES_UE"
def __init__(self, hf_token, embeddings_model, model_name):
self.model_name = model_name
self.hf_token = hf_token
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(self.vectorstore, embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def get_context(self, instruction, number_of_contexts=2):
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
return documentos
def predict(self, instruction, context, model_parameters):
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url=os.getenv("MODEL")+ "/v1/",
api_key=os.getenv("HF_TOKEN")
)
query = f"{context}\n\n{instruction}"
#sys_prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
#{"role": "system", "content": sys_prompt },
{"role": "user", "content": query}
],
stream=False
)
return(chat_completion)
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(doc[0].metadata["url"])
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
try:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict(prompt, text_context, model_parameters)
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source
except Exception as err:
print(err)
|