VECTOR_STORE_EADOP / vectorstore.py
ankush13r's picture
modify from rag to only vs
858a66e
raw
history blame
1.28 kB
import logging
import os
import requests
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class VectorStore:
vectorstore = "index-BAAI_bge-m3-1500-200-recursive_splitter-CA_ES_UE"
def __init__(self, embeddings_model):
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(self.vectorstore, embeddings, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def get_context(self, instruction, number_of_contexts=2):
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
return self.beautiful_context(documentos)
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
full_context += doc[0].page_content + "\n"
source_context.append(doc[0].metadata["url"])
return full_context