jgrivolla's picture
use Messages API (OpenAI)
c42abf4 verified
raw
history blame
3.02 kB
import logging
import os
import requests
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
#vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed
#vectorstore = "vectorestore" # CA only
vectorstore = "index-BAAI_bge-m3-1500-200-recursive_splitter-CA_ES_UE"
def __init__(self, hf_token, embeddings_model, model_name):
self.model_name = model_name
self.hf_token = hf_token
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(self.vectorstore, embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def get_context(self, instruction, number_of_contexts=2):
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
return documentos
def predict(self, instruction, context, model_parameters):
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url=os.getenv("MODEL")+ "/v1/",
api_key=os.getenv("HF_TOKEN")
)
query = f"{context}\n\n{instruction}"
#sys_prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
#{"role": "system", "content": sys_prompt },
{"role": "user", "content": query}
],
stream=False
)
return(chat_completion)
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(doc[0].metadata["url"])
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
try:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict(prompt, text_context, model_parameters)
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source
except Exception as err:
print(err)