File size: 14,193 Bytes
dc3939a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from collections import OrderedDict
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import torch
import torch.nn as nn
####################
# Basic blocks
####################
def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
# helper selecting activation
# neg_slope: for leakyrelu and init of prelu
# n_prelu: for p_relu num_parameters
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type == "leakyrelu":
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
else:
raise NotImplementedError(
"activation layer [{:s}] is not found".format(act_type)
)
return layer
def norm(norm_type: str, nc: int):
# helper selecting normalization layer
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError(
"normalization layer [{:s}] is not found".format(norm_type)
)
return layer
def pad(pad_type: str, padding):
# helper selecting padding layer
# if padding is 'zero', do by conv layers
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
else:
raise NotImplementedError(
"padding layer [{:s}] is not implemented".format(pad_type)
)
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ConcatBlock(nn.Module):
# Concat the output of a submodule to its input
def __init__(self, submodule):
super(ConcatBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = torch.cat((x, self.sub(x)), dim=1)
return output
def __repr__(self):
tmpstr = "Identity .. \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlock(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlockSPSR(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlockSPSR, self).__init__()
self.sub = submodule
def forward(self, x):
return x, self.sub
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
def sequential(*args):
# Flatten Sequential. It unwraps nn.Sequential.
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
ConvMode = Literal["CNA", "NAC", "CNAC"]
# 2x2x2 Conv Block
def conv_block_2c2(
in_nc,
out_nc,
act_type="relu",
):
return sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
act(act_type) if act_type else None,
)
def conv_block(
in_nc: int,
out_nc: int,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
c2x2=False,
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
if c2x2:
return conv_block_2c2(in_nc, out_nc, act_type=act_type)
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
a = act(act_type) if act_type else None
if mode in ("CNA", "CNAC"):
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
# Important!
# input----ReLU(inplace)----Conv--+----output
# |________________________|
# inplace ReLU will modify the input, therefore wrong output
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
else:
assert False, f"Invalid conv mode {mode}"
####################
# Useful blocks
####################
class ResNetBlock(nn.Module):
"""
ResNet Block, 3-3 style
with extra residual scaling used in EDSR
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
"""
def __init__(
self,
in_nc,
mid_nc,
out_nc,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode: ConvMode = "CNA",
res_scale=1,
):
super(ResNetBlock, self).__init__()
conv0 = conv_block(
in_nc,
mid_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
if mode == "CNA":
act_type = None
if mode == "CNAC": # Residual path: |-CNAC-|
act_type = None
norm_type = None
conv1 = conv_block(
mid_nc,
out_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
# if in_nc != out_nc:
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
# None, None)
# print('Need a projecter in ResNetBlock.')
# else:
# self.project = lambda x:x
self.res = sequential(conv0, conv1)
self.res_scale = res_scale
def forward(self, x):
res = self.res(x).mul(self.res_scale)
return x + res
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
c2x2=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
style: 5 convs
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
Args:
nf (int): Channel number of intermediate features (num_feat).
gc (int): Channels for each growth (num_grow_ch: growth channel,
i.e. intermediate channels).
convtype (str): the type of convolution to use. Default: 'Conv2D'
gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
trainable parameters)
plus (bool): enable the additional residual paths from ESRGAN+
(adds trainable parameters)
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
c2x2=False,
):
super(ResidualDenseBlock_5C, self).__init__()
## +
self.conv1x1 = conv1x1(nf, gc) if plus else None
## +
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
c2x2=c2x2,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
# pylint: disable=not-callable
x2 = x2 + self.conv1x1(x) # +
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2 # +
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# Upsampler
####################
def pixelshuffle_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor**2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
mode="nearest",
c2x2=False,
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
c2x2=c2x2,
)
return sequential(upsample, conv)
|